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Abstract—Rapid developments in recent years with the In-
ternet of Things (IoT) have supported significant growth in
edge computing. The growing number and diversity of IoT/edge
devices increase the risk of security incidents. As many IoT/edge
devices can be considered lightweight, with limited data pro-
cessing capacity and significant heterogeneity, traditional digital
forensic investigation techniques may not always work with them.
Network forensic readiness on IoT/edge devices is a proactive
approach to collecting evidence to assist with forensic examina-
tions. This paper introduces the Network Forensic Readiness for
Edge Devices (NetFoREdge) framework, focussing on deploying
lightweight AI models in resource-constrained environments
for attack detection, evidence collection, and preservation. The
proposed lightweight AI-driven solution performed effectively on
resource-constrained physical devices, namely a Raspberry Pi
3B and a Raspberry Pi Zero 2 W. To evaluate the effectiveness
of this approach, experiments have been conducted using two
datasets: the recently released IoT network attack dataset,
CICIoT2023, and the IoT-23 dataset. The experimental results
are very encouraging – achieving an accuracy rate exceeding
99.60% and 99.98% for multiclassification on CICIoT2023 and
IoT-23 datasets, respectively, and demonstrating the feasibility
of network forensic readiness on IoT/edge devices with limited
memory, storage, CPU usage, and power consumption.

Index Terms—Forensic Readiness, Internet of Things, Network
Intrusion Detection Systems, Artificial Intelligence.

I. INTRODUCTION

Increasingly complex network architectures and lower la-
tency requirements have pushed computation and application
services towards edge devices. Edge applications often have
complex implementations, while edge devices present signifi-
cant security threats [1]. These challenges are compounded by
the increasing frequency of threats to IoT and edge networks
that exploit devices and vulnerability of the protocol(s). A
recent Red Hat report [2] highlights the challenge of security
in edge development due to the increasing number of threats
targeting edge infrastructure. In addition, both IoT forensics
and forensic readiness are growing topics within the digital
forensic research community [3]. Conventional digital forensic
readiness approaches are not suitable for IoT devices due to
their limited resources and lightweight nature [4].

IoT/Edge network forensics readiness can prove crucial to
detecting and responding to security incidents [5]. IoT ecosys-

tems, with their inherent vulnerabilities and lack of uniform
standards, pose challenges to digital investigations. Finding
the root cause can be facilitated by gathering evidence from
various sources when anomalies arise. Network provenance
plays a crucial role in attack detection and improving forensic
investigations by providing evidence support. Although Net-
work Intrusion Detection Systems (NIDS) are essential for
network security in IoT environments, they can lack the ability
to provide comprehensive post-attack forensic analysis.

Deep Learning (DL) has proven effective for network foren-
sics [6] but its application on resource-constrained IoT/edge
devices presents challenges. AI-powered solutions for network
forensics require a significant amount of computational power,
which consumes considerable resources and energy [7]. To
address these challenges, this research presents an innovative
solution: Expanding DL capabilities to resource-constrained
devices for network forensic readiness. This approach reduces
computational usage, power consumption, memory usage, and
storage burden while maintaining precision and efficacy when
detecting network attacks. In addition, it supports the collec-
tion and preservation of key evidence to improve network
forensic analysis.

A. Contribution of This Work

The main contributions of this paper are as follows:
• Although other network forensic readiness frame-

works/methodologies have been published in the liter-
ature, none have focused on resource-constrained envi-
ronments. This paper outlines the design, implementation
and evaluation of a novel framework for network forensic
readiness in resource-constrained environments.

• The proposed framework uses less computational and
power resources compared to existing approaches while
achieving comparable results. In addition, it collects and
preserves key evidence, helping investigators in post-
attack network forensic analysis.

• A detailed analysis of nine different AI algorithms for
multiclassification tasks.

• An analysis of resource utilisation of each of the proposed
models and a demonstration of the viability of lightweight



AI models for network forensic readiness in resource-
constrained environments.

• An evaluation of the framework using the CICIoT2023
and IoT-23 datasets using physically representative
IoT/edge devices, namely a Raspberry Pi 3B and a
Raspberry Pi Zero 2 W.

II. RELATED WORK

In the field of IoT/edge networks, DL and Machine Learning
(ML) techniques play a crucial role in improving network
forensic readiness in resource-constrained scenarios [1, 6].

Recently, Wang et al. [8] introduced a lightweight Intrusion
Detection System (IDS) model based on BIdirectional Long
Short-Term Memory (DL-BiLSTM). This model effectively
addressed the resource constraints commonly encountered in
IoT devices. Using Incremental Principal Component Analy-
sis (IPCA) and dynamic quantisation techniques, the model
achieved good results in terms of both intrusion detection
and computational efficiency on benchmark datasets, including
CIC-IDS2017, N-BaIoT, and CICIoT2023. The results high-
light the superiority of the DL-BiLSTM model over traditional
DL models and the state-of-the-art in terms of detection
accuracy while maintaining a lower model complexity.

Narayan et al. [9] introduced an ML-based framework that
focusses on the latest CICIoT2023 dataset. Using the Random
Forest (RF) algorithm, this framework achieved significant
improvements in precision, recall, and F1 score when com-
pared to existing methods. The framework exhibited accuracy
rates of 99.68%, 99.44%, and 99.23% for binary classification,
8 distinct classes, and 34 distinct classes, respectively. The
authors [10] proposed a lightweight DL-based IDS for binary
classification, which addresses the concern of IDSs that re-
quire significant computational resources and processing time.
They evaluated the proposed model using two datasets (CIC-
IDS2017 and CSE-CIC-IDS2018), obtaining high accuracy of
99.7% and 99.98%, respectively. Danso et al. [11] proposed an
innovative approach based on transductive transfer learning for
the profile and identification of IoT devices, addressing device
type identification, vulnerability assessment, and visualisation.
This approach reflects robustness and validation against di-
verse datasets, confirming its suitability for IoT security.

In [12], the authors presented a multigranular attention Bi-
LSTM-CRF model designed to extract Indicators of Com-
promise (IOCs) from a range of threat text sources. They
employed a Heterogeneous Information Network (HIN) to
contextualise the IOCs, manually defining meta-paths to illus-
trate relationships among them. This study focused on six key
categories: attacker, vulnerability, device, platform, malicious
file, and attack type. Although the precision of IOC extraction
reached 99.86%, it varied across different items. Furthermore,
the multigranular model achieved a precision of 98.72% in
threat entity recognition compared to other methods tested.

In the landscape of digital forensics for smart environments,
Babun et al. [13] presented IoTDots, a novel framework com-
posed of a modifier and an analyser. The approach combined
source code review and data processing to extract valuable

forensic information related to device activity during incidents.
Meffert et al. [14] proposed a model to acquire forensic state
information from IoT devices through a centralised controller.
The model detected alterations in the infected devices for
the construction of a chronological timeline. However, it
is essential to note the challenge of retrieving deleted or
historical data, which can hinder comprehensive investigative
efforts.

A survey on deep neural networks was conducted that
reduces the processing, storage, and energy requirements of
IoT applications by Mishra and Gupta [15]. The authors
divided the strategies into five categories: knowledge distilla-
tion, bit precision, network pruning, sparse representation, and
miscellaneous. The authors examined each category in detail
and identified their current challenges.

In the state of the art, there has been significant progress
in developing a wide range of techniques for IDS for
IoT networks/resource-constrained environments. However,
despite these advances, the critical area of evidence collection
in such environments remains largely unexplored. To address
this research gap, this study proposes an AI-based frame-
work for resource-constrained environments. The framework
focusses on evidence collection after detecting various types of
network attacks, facilitating investigators in conducting post-
attack network forensic analysis.

III. METHODOLOGY FOR NETWORK FORENSIC
READINESS FOR EDGE DEVICES

The proposed Network Forensic Readiness for Edge De-
vices (NetFoREdge) framework uses an AI-based model
designed to operate efficiently within resource-constrained
environments. NetFoREdge continuously monitors real-time
network traffic to differentiate between normal network ac-
tivity and potentially malicious behaviour. Once an attack
is identified, NetFoREdge employs AI models to accurately
categorise the attack in progress and begins collecting evidence
and saving it. This process unfolds systematically, encom-
passing the acquisition and archiving of evidence metadata
associated with the detected malicious activity. The evidence
collection includes diverse data, such as network traffic logs,
packet captures, and other relevant data points. NetFoREdge
avoids immediate intervention or countermeasures against the
attack, instead focussing on the preservation of evidence. The
objective is to ensure the safety of digital evidence until it is
required by forensic analysts for further investigation. Figure 1
illustrates the framework of the proposed work for IoT/edge
devices.

While traditional NIDS may struggle with the limitations
imposed by constrained computational, power, memory, and
storage resources, NetFoREdge is optimised for efficiency. Its
operation is based on the use of lightweight AI models, which
minimise computational, memory, power, and storage concerns
while maintaining a high level of accuracy.

In a resource-constrained environment, the ability to iden-
tify, categorise and preserve data relevant to possible security
incidents is developed as an essential element of maintaining



Fig. 1: The Framework of the Proposed IoT/Edge Forensic Readiness Methodology

network security. NetFoREdge provides forensic analysts with
the tools and data they need to conduct investigations by
precisely recognising and categorising network attacks and
systematically collecting digital evidence.

A. Experimental Setup

The experimental setup was chosen to facilitate the creation
and modification of ML and DL techniques for resource-
constrained environments. The primary objective was to ex-
plore diverse model architectures and hyperparameters to
identify optimal configurations that deliver exceptional per-
formance while minimising computational, memory, power,
and storage demands. To achieve this, systematic changes
were made to components such as layers, hyperparameters,
activation functions, kernel sizes, and loss functions in DL
models, along with dilation rates in 1D-DCNN. The aim was to
investigate these components to achieve the optimum balance
between model accuracy and computational efficiency. The
slack environment and physical environments used as part of
this work are outlined in the following subsections.

1) Slack Environment: The slack environment served as a
platform for data pre-processing and the initial development
and testing of the proposed models. The slack environment
consisted of hardware that included an Intel Core i7-1165G7
processor with 32GB of RAM. The model development was
carried out using Python version 3.9.7, with scikit-learn
for ML models, and TensorFlow and Keras for DL mod-
els. Data preprocessing tasks were efficiently handled using
the Pandas and NumPy libraries. The Seaborn library was
used for data visualisation and analysis.

2) Resource-constrained Environment: The importance of
establishing an environment that accurately simulates the lim-
itations caused by limited resources was achieved through the
utilisation of multiple physical devices, including a Raspberry
Pi 3B and Pi Zero 2 W (both having a 64-bit architecture).
The Raspberry Pi is popular in the literature on resource-
constrained environments [16, 17, 18]. The use of these
devices highlights the feasibility and significance of research
in the context of IoT/edge security. The selection of Raspberry
Pi 3B and Pi Zero 2 W over more powerful in terms of

resources, newer models such as the Raspberry Pi 4 or Pi
5 demonstrate the applicability of the proposed model to low-
end devices without impacting the primary task. It provides
a real-world scenario for the performance evaluation of the
proposed models in resource-constrained environments. As a
result, reliable and useful insights into the effectiveness of
the proposed models in realistic resource-constrained environ-
ments were achieved. The details of the software and hardware
used for experiments are summarised in Table I.

B. Dataset Description

The first dataset used in this work, the CICIoT2023 [19]
dataset, is a significant recent contribution to IoT security
research created by the Canadian Institute for Cybersecurity
(CIC) at the University of New Brunswick – providing a
new benchmark for large-scale attacks in IoT environments.
It includes an IoT topology with 105 devices and 33 attacks
categorised into seven classes: Denial of Service (DDoS),
Distributed DoS (DDoS), Recon, Web-based, Brute Force,
Spoofing, and Mirai. This dataset enables researchers to eval-
uate security analytics applications and advance the field. A
notable strength of this dataset is the inclusion of realistic
IoT attack scenarios. It provides comprehensive documentation
and data collection procedures for each attack. Based on the
popularity of previously released CIC datasets, combined with
the size of the dataset and the variety of attacks present,
CICIoT2023 is likely to become a popular benchmarking
dataset to evaluate ML and DL algorithms to detect malicious
IoT network traffic.

The second dataset used in this work is the IoT-23 dataset
created by the Avast AIC laboratory [20]. The dataset is
derived from IoT network traffic and contains communica-
tion data from three benign IoT devices and twenty mal-
ware scenarios. There are 325,307,990 records in total, with
294,449,255 being malicious records. There are 21 features in
the dataset.

C. Pre-processing on Datasets

Exploratory Data Analysis (EDA) plays a crucial role in
optimising the performance of AI models. In this paper, EDA



Slack Environment Resource-constrained Environment
Devices Dell Desktop Raspberry Pi 3B Raspberry Pi-Zero 2 W
Hardware Specification Processor: Core i5, RAM: 32GB, Stor-

age: 512GB
Processor: Quad Core (1.2GHz), RAM:
1GB, Storage: 16GB

Processor: Quad Core (1.0 GHz),
RAM: 512MB, Storage: 8GB

Processor Architecture 64-bit 64-bit 64-bit
Operating System Windows 10 Linux Debian V:12 Linux Debian V:12
Connectivity Ethernet Wifi Wifi
Software Libraries Tensorflow, Keras, Scikit-learn, Numpy,

Pandas, Seaborn
Tensorflow, Keras, Scikit-learn, Numpy,
Pandas, Seaborn

Tensorflow, Keras, Scikit-learn,
Seaborn

IDE Jupyter Notebook Geany Geany
Programming Language Python: 3.9.7 Python: 3.11.6 Python: 3.11.6

TABLE I: Apparatus Table

was performed on a Comma Separated Values (CSV) file of
the CICIoT2023 dataset and the IoT-23 data frames. The data
preprocessing involved eliminating duplicate entries, removing
null and missing values, addressing inconsistent data, and
discarding irrelevant features. The revised attack distribution
showed a notable decrease in instances for each class.

To address class imbalance, ensemble techniques were em-
ployed to rectify the disparate representation of attack classes.
These methods improve predictive performance by combining
multiple classifiers or models, each trained on various subsets
of the imbalanced data. The refined distribution across the at-
tack classes on the CICIoT2023 dataset was as follows: DDoS
(1,941,636), DoS (467,412), Mirai (151,934), Benign (63,767),
Spoofing (28,322), Recon (20,536), Web-based (1,410), and
Brute Force (749). To address class imbalance in the IoT-
23 dataset, attacks C&C-Mirai, C&C-Torii, and FileDownload
were excluded due to fewer instances.

A preprocessing label encoder was applied to convert the
attack class labels into a numeric representation. The label
encoder assigned a unique numerical value to each attack class,
transforming them from categorical variables into numerical
labels. This conversion facilitated the use of various ML
algorithms and techniques that require numeric inputs. The
datasets were partitioned into training and test sets in an 80:20
and 70:30 ratio for CICIoT2023 and IoT-23 respectively, to
enable effective model evaluation and validation.

D. Deep Learning Algorithms

1) Convolutional Neural Network: 1D Convolutional Neu-
ral Networks (1D-CNNs) were considered due to cost-effective
and time-saving real-time implementation using 1D convo-
lutions, making these networks suitable for real-time attack
detection and monitoring. The 1D-CNN model has been
optimised for feature extraction and classification. Starting
with 32 filters-based convolutional layers arranged to catch
localised patterns, this procedure yields a tensor shape (None,
10, 32) with variable batch sizes (None), a sequence length
of 10, and 32 filters; acting as an effective feature extractor
capable of extracting critical features from datasets.

Subsequently, the max-pooling layer intelligently reduces
dimensionality while preserving essential features. This pro-
cess eliminates less important features from consideration and

selects a shape of (None, 5, 32) for the output, enhanc-
ing computing efficiency. Next, a convolutional layer with
64 filters is incorporated to further expand the architecture,
allowing the extraction of complex features from the data
to create an effective representation. This layer shortens the
sequence length to 3, and as the number of filters increases,
it generates an output shape of (None, 3, 64). This improves
the classification capabilities of the model.

Following the layers within the architecture, including a
flattening layer to convert the output of the convolutional layer
to one-dimensional vectors, a dense layer has been added
to classify the output by utilising the softmax activation
function. All layers process and transform extracted features
for more accurate classification.

2) Dilated Convolutional Neural Network: The 1D Dilated
Convolutional Neural Networks (1D-DCNNs) offer distinct
advantages over traditional CNNs [10]. This paper introduces
an optimised 1D-DCNN model that demonstrates strong fea-
ture extraction and classification capabilities. The hyperpa-
rameter fine-tuning plays a crucial role in handling complex,
real-world challenges. The proposed model was initiated with
a convolutional layer of 32 filters, a kernel size of 1, and
a dilation rate of 2, which efficiently extracted patterns and
essential attributes from the data. This dilated convolution
layer expanded the contextual scope for information extraction.
This layer served as a repository of learnt representations upon
which subsequent layers were constructed. The model was
then expanded by adding another convolutional layer with 64
filters, 1 kernel size, and 8 dilation rates to further extract
complex details and more complex representations through the
additional layer. A higher dilation rate helps capture complex
relationships and insightful patterns with more precision. Both
layers act as efficient feature extraction mechanisms.

Flattening layers reshape the output to a one-dimensional
format to ensure compatibility with dense layers, enabling
efficient integration. The final dense layer uses softmax
activation for multi-class predictions, with weights optimised
by the Adam algorithm.

E. Recurrent Neural Network

1) Long Short-Term Memory: Recurrent Neural Networks
(RNNs) are known to be computationally intensive due to the
backpropagation-through-time process [21]. To address this



challenge, the Long Short-Term Memory (LSTM) architecture
was introduced as an RNN variant, optimised for training
efficiency over longer time intervals. The model architecture
includes an LSTM layer and a dense layer, designed to capture
and learn relationships over time.

Traditional RNNs often experience the vanishing gradient
problem, which LSTM layers avoid by employing their gating
mechanism. The output shapes (None, 64) and 19,712 trainable
parameters allow this model to capture long-term dependencies
while maintaining contextual memory – making it partic-
ularly effective when dealing with sequences characterised
by temporal gaps. Following the LSTM layer, a dense layer
with 650 trainable parameters is added, providing a deeper
abstraction of the learnt features. This structure yields simple,
interpretable representations, offering valuable insights into
reasoning processes within models.

2) Gated Recurrent Unit: Gated Recurrent Unit (GRU)
models are an ideal solution for real-time applications as
they require fewer training parameters and therefore consume
less memory. The proposed model contains 14,976 trainable
parameters. GRU layers recognise long-term dependencies and
bypass the limitations of traditional RNNs through their gating
mechanisms. These gates manage the flow of information by
selectively updating and resetting the hidden state, enabling
adaptive retention or the discarding of information from pre-
vious time steps. The GRU layer efficiently learns temporal
dependencies, making it suitable for analysing sequences with
variable lengths and complex patterns in applications like
natural language processing and sentiment analysis.

A dense layer is built upon a GRU layer with nonlinear
transformation to improve the model’s performance. Its output
shape is (None, 10), with 650 parameters. This layer converts
GRU representations into class probabilities for prediction
across multiple categories and enhances decision-making and
interpretability by providing insights into learnt features.

F. Machine Learning Algorithms

An experimental approach was used to ensure comprehen-
sive and impartial model selection. This technique involved
training and evaluating well-established ML algorithms such
as K-Nearest Neighbours (KNN), Random Forest (RF), Deci-
sion Trees (DT), XGBoost (XGB), and Naı̈ve Bayes (NB).
The GridSearchCV function was used to maximise the
predictive accuracy and robust generalisation of the perfor-
mance of each model. Hyperparameter optimisation involves
creating a parameter grid that contains relevant hyperparameter
values specific to each model. For example, in the case of
the RF model, parameters such as the number of estimators,
the maximum features per split, and the splitting criteria
were systematically taken into account. The GridSearchCV
algorithm evaluated various combinations of hyperparameters
available within each model’s application space before select-
ing the optimal set for each one. Following the hyperparameter
optimisation phase, the models were trained on the datasets.

IV. RESULTS AND FINDINGS

The optimal performance in resource-constrained environ-
ments was achieved by tuning the hyperparameters of the
model to not consume more than 60% of memory for any
model. To evaluate CPU usage, the psutil library was used.

A. Results Analysis

With the CICIoT2023 dataset, RF and DT achieved accu-
racy rates of 99.58% and 99.47% respectively; while XGB
reached 99.60%. To optimise DL models on this dataset, 15
training epochs were reduced to 6 using an early stopping tech-
nique to limit overfitting, leading to accuracy rates between
98.80% and 99.06%, showing their effectiveness in capturing
related patterns and relationships.

In terms of training time on both datasets, NB required less
training time; however, its accuracy is not sufficient compared
to other models. KNN notably required fewer training times
compared to other proposed models, recording 162.9s for
CICIoT2023 and 0.5s for IoT-23. However, its validation
time was higher due to its lazy learning nature, which involves
distance calculations between data points during the predic-
tion. DT required less training time on both PC and Raspberry
Pi, with significant accuracy. The RNN models, i.e., LSTM
and GRU, required less training time in resource-constrained
environments compared to CNN models. DCNN outperformed
traditional CNN in terms of training time; however, it achieved
slightly lower accuracy. Tables II and III provide a detailed
examination of the characteristics of each model on the
CICIoT2023 and IoT-23 datasets.

SNo Model PC
Tr

ai
ni

ng
Ti

m
e

(s
)

PC
Va

lid
at

io
n

Ti
m

e
(s

)

PC
C

PU
U

sa
ge

(%
)

Pi
3B

Tr
ai

ni
ng

Ti
m

e
(s

)

Pi
3B

Va
lid

at
io

n
Ti

m
e

(s
)

Pi
3B

C
PU

U
sa

ge
(%

)

Pi
Z

er
o

2
W

Va
lid

at
io

n
Ti

m
e

(s
)

Pi
Z

er
o

2
W

C
PU

U
sa

ge
(%

)

A
cc

ur
ac

y
(%

)

F1
Sc

or
e

1 DT 24.16 0.12 0.21 397.38 1.31 21.80 26.04 28.75 99.47 0.994

2 RF 484.35 5.91 12.43 5,331.78 133.32 26.50 84.24 34.42 99.58 0.995

3 KNN 0.23 35,143.31 15.56 162.98 386,573.65 31.24 567,525.42 52.91 99.19 0.992

4 NB 1.37 1.12 4.01 648.47 29.17 19.10 450.98 24.53 78.40 0.712

5 XGB 687.39 0.84 41.27 1,611.57 12.31 44.38 48.18 42.10 99.60 0.994

6 1D-CNN 1,160.30 313.56 35.25 27,004.48 340.81 39.75 368.81 54.45 98.80 0.988

7 1D-DCNN 1,146.76 182.83 34.43 11,689.77 344.44 37.85 337.33 47.20 98.92 0.987

8 LSTM 396.19 198.23 19.50 8,622.88 264.79 26.50 359.07 43.23 99.06 0.989

9 GRU 376.21 198.93 19.30 7,893.12 251.17 26.00 337.41 41.22 99.01 0.989

TABLE II: Evaluation on the CICIoT2023 Dataset

With the IoT-23 dataset, the ML models outperformed the
DL models; in particular, XGB reached 99.98% accuracy,
while DT and RF achieved 99.94% and 99.89%, respectively.
DL models (LSTM, GRU, 1D-CNN, and 1D-DCNN) achieved
accuracies between 97.85 and 99.16 %, showing their ability
to identify complex patterns.

A comprehensive comparison was carried out between the
proposed DL models and those presented by Wang et al.
[8]. This analysis included an examination of the size of the
models, the performance results, and the efficiency of the
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1 DT 0.27 2.00 1.54 1.12 2.02 28.62 2.49 30.40 99.94 0.999

2 RF 8.93 2.26 2.41 34.89 3.47 25.61 3.27 40.30 99.89 0.999

3 KNN 0.16 3.16 0.96 0.56 14.74 25.44 15.89 28.80 90.94 0.912

4 NB 0.02 2.02 0.40 0.12 2.16 27.52 2.43 53.20 58.85 0.458

5 XGB 1.95 2.03 7.61 13.35 2.22 77.61 2.37 95.53 99.98 0.999

6 1D-CNN 58.69 2.76 1.41 749.55 8.91 10.43 16.51 13.20 99.16 0.991

7 1D-DCNN 67.62 2.62 1.01 628.32 6.89 8.21 15.20 12.35 97.85 0.979

8 LSTM 70.74 2.72 1.42 509.74 10.65 11.05 18.10 11.27 97.97 0.981

9 GRU 75.62 2.66 1.22 547.42 14.05 9.89 17.70 11.39 98.45 0.982

TABLE III: Evaluation on the IoT-23 Dataset

Model Training (s) Accuracy (%) Size (KB) Parameters

CNN [8] 1,515.4 92.2 184.1 42,952

Proposed CNN 1,160.3 98.8 298.7 32,330

LSTM [8] 764.8 92.7 88.4 21,128

Proposed LSTM 396.2 99.0 350.2 20,362

DL-BiLSTM [8] (Best performed) 708.4 93.1 36.5 1,988

Proposed LSTM (Best performed) 396.2 99.0 350.2 20,362

TABLE IV: DL Models Compared with [8] on CICIoT2023

training, as presented in Table IV. The results clearly demon-
strate that the proposed models possess clear advantages, with
lighter models simultaneously attaining higher accuracy with
reduced computational demands and computational costs. The
PowerTop utility was used to monitor the energy consumption
of each AI model using a default 20 second interval setting.
Table V presents the total power consumption of each AI
model. The resource-constrained experiments and the corre-
sponding results illustrate that both the DL and ML models
have significant potential for NetFoREdge.

AI Model
CPU Train

(mW)
AI Model Train

(mW)
CPU Test

(mW)
AI Model Test

(mW)

DT 5,490 876 5,030 327

RF 5,670 1,470 5,750 367

KNN 4,820 911 5,600 1,510

NB 4,580 416 3,850 279

XGB 6,780 3,260 4,980 335

1D-CNN 5,600 1,700 4,510 881

1D-DCNN 5,400 1,550 4,360 605

LSTM 6,000 2,020 4,950 871

GRU 5,840 1,630 4,250 635

TABLE V: CPU & AI Models Power Consumption During
Training and Testing Phase on a Raspberry Pi 3B

V. COMPARISON AND DISCUSSION

The proposed approaches performed efficiently by achieving
higher accuracy in resource-constrained environments while

consuming less power and requiring less training time com-
pared to existing approaches, e.g., the method proposed by
ElSayed et al. [22] required 7,500mW on the Raspberry Pi 4B.
Agbedanu et al. [23] utilised a Raspberry Pi 4 with 2GB RAM
and 32GB storage, along with an AMD V7 quad-core pro-
cessor, and achieved a power consumption of 259mW. Their
proposed model required 149s to train the model. Similarly,
the approach proposed by Bhandari et al. [24] employed a
Raspberry Pi 4 with 8GB RAM and an ARM Cortex-A72
processor, consuming significantly less power (237mW).

Although existing approaches demonstrate lower power
consumption compared to this work, it is essential to note
that the proposed method is deployed on a cost-effective
Raspberry Pi 3B with 1GB RAM, 16GB storage, and a Cortex-
A53 (ARMv8) processor. Despite this, the proposed method
requires only a negligible increase in power consumption, i.e.,
327mW and 371mW for IoT-23 and CICIoT2023 datasets,
respectively. However, it significantly outperforms existing
techniques in terms of accuracy and training time, achieving an
impressive accuracy of 99.6% and 99.9% for CICIoT2023 and
IoT-23 respectively. The proposed model required 397.3s
and 1.1s of training time for the CICIoT2023 and IoT-23
datasets, respectively, as shown in Table VI.

Ref. Device Dataset Accuracy
(%)

Training
(s)

Power
(mW)

Agbedanu et al. [23] RPi 4B UNSW-NB15 97.6 149.0 259

Bhandari et al. [24] RPi 4B IoT-23/EdgeIIoTset 95.0/96.0 - 237

ElSayed et al. [22] RPi 4B CICIoT2023 93.6 - 7,500

Proposed Model RPi 3B IoT-23 99.9 1.1 327

Proposed Model RPi 3B CICIoT2023 99.6 397.3 371

TABLE VI: Power Comparison of Proposed Work with Exist-
ing Approaches

As shown in Table VII, despite the resource-constrained
limitation of the presented work, the proposed models
achieved results comparable to existing research (notably with
those existing approaches having more powerful systems) and
also achieved better results than existing work using higher-
end, nonresource-constrained systems.

Reference Dataset Classification Low-end
device

Accuracy
(%)

Nguyen et al. [25] IoT-23 Multi-class ✓ 73.0
Rizvi et al. [1] IoT-23 Multi-class ✓ 99.9
Proposed model IoT-23 Multi-class ✓ 99.9
ElSayed et al. [22] CICIoT2023 Binary ✓ 93.6
Narayan et al. [9] CICIoT2023 Multi-class ✗ 99.4
Le et al. [26] CICIoT2023 Multi-class ✗ 99.5
Proposed model CICIoT2023 Multi-class ✓ 99.6

TABLE VII: Accuracy Comparison of Proposed Models with
Existing Approaches

The results demonstrate that the selection of an AI model
for a resource-constrained environment depends on factors



such as the nature of the data, sample size, and intended
application. Customising the AI model to address the unique
aspects of the problem is crucial. In particular, training AI
models in resource-constrained environments offers distinct
benefits. For example, retraining models with specific traffic
patterns on individual devices can enhance evidence collection.
Furthermore, this method is advantageous in remote areas with
limited or no Internet connectivity and ensures privacy and
data security by avoiding data transfer to the cloud.

Power consumption is a crucial factor when selecting an
AI-driven solution for resource-constrained environments. The
power requirements for the AI model training phase depend
on factors such as the size of the training dataset. This study
utilised the Running Average Power Limit (RAPL), a CPU
hardware feature, to measure each AI model’s power con-
sumption. Although RAPL is slower compared to hardware,
communication with the power engine should be examined to
prevent undesirable behaviours. The power metre may detect
minor variations in power consumption.

A. Benefits

Nik Zulkipli and Wills [27] summarises the general ad-
vantages of forensic readiness for IoT devices, which apply
equally to the work presented as part of this paper. These
include preparing for the future needs for digital evidence, re-
ducing digital investigation costs, preventing insider bad actors
from covering their tracks, improving corporate governance,
and reducing the costs of statutory disclosure requirements.
NetFoREdge contributes the following additional benefits in
edge forensics, specifically for resource-constrained devices:

• NetFoREdge utilises fewer resources in terms of CPU
load and power, which enables localised network forensic
readiness in resource-constrained environments.

• NetFoREdge can seamlessly be deployed on physical IoT
and Edge devices with negligible impact on operational
efficiency.

• NetFoREdge allows for the prioritisation of pertinent lo-
cal edge-based data collection, preservation, and analysis
based on each attack’s potential severity and impact.

B. Limitations and Future Work

Although the approach outlined as part of this paper has
several benefits, a number of limitations have also been
identified, each of which is addressable in future work:

• The requirement to use the device’s CPU and memory
for the training and/or testing of the proposed approach
necessitates that a suitable amount of free CPU cycles and
memory be available on the already resource-constrained
device, which already has its existing task(s) to perform.

• Although the proposed models exhibit promise within
controlled environments, their practical deployment in
diverse real-world scenarios has not been extensively ex-
amined. Factors such as varying network conditions, de-
vice heterogeneity, and environmental disturbances may
pose challenges that impact the models’ performance and
reliability in real-world deployments.

In the future, the objective is to evaluate a system by mon-
itoring live network traffic and analysing various parameters
such as throughput, latency, and memory usage. The aim is
to determine how resource-constrained devices are affected
and whether these impacts compromise the routine functioning
of IoT and edge devices. Future directions worth exploring
include deploying lightweight AI-based models across a va-
riety of IoT and edge devices to check their scalability and
performance across diverse configurations.

VI. CONCLUSION

To enhance security and aid forensic readiness in complex,
heterogeneous networks, this paper proposes training and
deploying lightweight network traffic classification algorithms
directly on low-powered physical Raspberry Pi devices to
increase protection, while categorising pertinent traffic for stor-
age and potential further investigation. AI models have demon-
strated real-time detection of malicious attacks with minimal
computational, memory, power, and storage use, making them
suitable for resource-constrained environments. The models
were validated using the CICIoT2023 and IoT-23 datasets,
achieving impressive accuracy rates of 99.60% and 99.99%,
respectively, across several distinct attack types with minimal
resource usage, while also attaining F1 scores of 99.44% for
CICIoT2023 and 99.97% for IoT-23. These findings provide
valuable information on training time, validation time, CPU
usage, and power consumption when selecting lightweight
algorithms for forensic readiness. These results highlight the
ability of the proposed models to prepare systems by facilitat-
ing the detection, categorisation, and systematic preservation
of evidence for subsequent forensic analysis, significantly
advancing readiness for subsequent forensic analysis.
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