
An AI-Based Network Forensic Readiness
Framework for Resource-Constrained

Environments

Syed Rizvi1[0000−0003−1938−8036], Mark Scanlon2[0000−0002−6581−7164], Jimmy
McGibney1[0000−0003−4541−1420], and John Sheppard1[0000−0003−4212−0329]

1 South East Technological University, Waterford, Ireland
Syed.Rizvi@postgrad.wit.ie, {Jimmy.McGibney, John.Sheppard}@setu.ie
2 School of Computer Science, University College Dublin, D04 V1W8, Ireland

mark.scanlon@ucd.ie

Abstract. In recent years, the adoption of Internet of Things (IoT)
devices has transformed industries and daily life. However, the integra-
tion of real-time services and internet connectivity increases the risk of
attackers exploiting network vulnerabilities. Investigating such vulnera-
bilities in Resource-Constrained Environments (RCEs) poses challenges
due to limited computational capacity, power constraints, and the het-
erogeneity of IoT-generated data and traffic. To address these issues, this
study proposes a framework integrating optimised artificial intelligence
models trained on the CICIoT2023 and CSE-CIC-IDS2018 datasets. A
Docker-based simulation replicates constrained environments and cap-
tures network traffic in real time. The framework continuously monitors
resources and dynamically selects the most suitable AI model for attack
detection. Once an attack is detected, the system captures and preserves
digitally signed critical forensic artefacts, categorised into system meta-
data, event/resource logs, network data, and processes. The AI-based
framework aligns with ISO/IEC 27043:2015 Digital Forensic Readiness
principles, automating many manual procedures and reducing both time
and human effort. The quantitative evaluation demonstrates the effec-
tiveness of the proposed network forensic readiness framework to address
the specific challenges of RCEs.

Keywords: Network Forensic Readiness · IoT Forensics · Artificial In-
telligence · Resource-constrained Environments

1 Introduction

The ubiquitous nature of Internet of Things (IoT) devices makes them vulner-
able to attack. Investigating these attacks can be difficult because IoT devices
have limited processing capabilities, power constraints, and storage, and different
types of devices pose significant challenges for forensic investigation [2, 18].

IoT devices can be the source of potentially pertinent digital forensic evidence
and are a common focus of digital forensic research [3]. However, IoT activities



2 S. Rizvi et al.

are often short-lived and their associated data can be volatile. This presents chal-
lenges to trace security breaches, as the collection of evidence from IoT devices
that are no longer connected to the network is complicated [7]. Data Integrity
and Authenticity (DIA) are important in IoT forensics due to tampering risks
and the transient nature of IoT data. Traditional digital forensic models devel-
oped for post-incident investigations struggle to adapt to the heterogeneous and
complex nature of IoT devices. This limitation has complicated forensic investi-
gations after security incidents, highlighting the need for a proactive approach.

Network Forensic Readiness (NFR) provides a proactive method to prepare
for security incidents. NFR focusses on the identification, collection, and preser-
vation of network evidence to support compliance and investigations [5]. The
complexity of IoT networks necessitates a robust framework NFR approach to
minimise human involvement in data collection, processing, and preservation
while reducing investigative costs and latency. The framework proposed as part
of this paper is aligned with the ISO/IEC 27043:2015 standard [23] to ensure
that appropriate and effective Digital Forensic Readiness (DFR) methods are in
place before an incident occurs.

The integration of Artificial Intelligence (AI) into network forensics has trans-
formed attack detection and forensic readiness. The deployment of AI models
in Resource-Constrained Environments (RCEs) poses significant challenges due
to limited computational capabilities, energy constraints, and limited network
bandwidth [21, 16]. A Network Intrusion Detection System (NIDS) serves as
the first line of defence. An AI-based NIDS has significant demands on device
resources and network bandwidth. It requires mechanisms to dynamically pri-
oritise or delay detection based on resource availability. The transient nature of
events in RCE, where evidence can vanish after network access, highlights the
need for efficient and scalable frameworks.

1.1 Key Contributions

In this paper, an AI-based optimised NFR framework is proposed to improve
forensic readiness in RCE. The framework facilitates real-time network traffic
capture and processing at the source. The new insights from the work highlight
the trade-off between resource utilisation, throughput, and detection accuracy
in RCE. The framework introduces dynamic model selection in real time based
on available computational resources to ensure optimal performance. It supports
comprehensive evidence acquisition to help forensic investigation by collecting
system metadata, logs, and memory snapshots at the time of the incident. The
effectiveness of the framework is validated through extensive real-time attack
simulations involving seven different types of attack across five distinct devices,
providing a quantitative evaluation of its performance. The framework performs
multiclass attack classification and detects attacks in just 0.3 ms per packet,
making it suitable for real-time use. The suggested framework achieved the
highest 99.58% and 99.91% accuracy in the CICIoT2023 and CSE-CIC-IDS2018
datasets, respectively.



An AI-Based Network Forensic Readiness Framework for RCEs 3

2 Related Work

Several studies have explored various aspects to improve attack detection, evi-
dence acquisition, preservation, and analysis while addressing the limited com-
putational nature of RCE.

Sadineni et al. [19] presented Ready-IoT, a forensic-readiness model that
gathers data at both the network and application layers. The workflow spans
scenario definition, device setup, event detection, evidence acquisition, preser-
vation and readiness configuration. Experiments in Contiki-NG’s Cooja emu-
lator assessed the model against jamming and synchronisation attacks in the
Time-Slotted Channel Hopping (TSCH) layer. Evidence is retained in a secure
database, maintaining the chain of custody.

Recently, Waguespack et al. [25] introduced the Memory Anomaly Recogni-
tion System (MARS), a host IDS that monitors device memory within a Trusted
Execution Environment (TEE). A Convolutional Neural Network (CNN) de-
ployed on a remote server analyses n-gram sequences from memory dumps to
detect deviations from the memory baseline. These sequences are also converted
into audio spectra to extract features such as MFCCs, Mel spectrograms, and
chroma variants for intrusion detection. MARS uses a watchdog timer to enforce
periodic memory capture, triggering a device reset upon anomaly detection.
This mechanism mitigates basic malware, while a secure boot process protects
firmware integrity against advanced threats. Evaluations of the STM32 controller
demonstrated scalability, trustworthiness, accuracy, and robustness.

Kebande et al. [8] introduced a comprehensive forensic model for IoT devices
based on the ISO/IEC 27043 standard. The model spans the entire forensic life-
cycle through three phases: forensic readiness (proactive), forensic initialisation
(incident), and forensic investigation (reactive). The proposed model eliminates
the need for ad hoc approaches, supports diverse IoT applications, and provides
a customisable and configurable framework. Rizal et al. [15] also introduced a
framework by integrating the Gated Recurrent Unit (GRU) model to improve
forensic readiness in an IoT environment based on the ISO/IEC 27043 standard.
The framework includes a smart repository and a sophisticated storage system
designed to organise evidence using metadata and contextual information. The
repository automates tasks, recognises patterns, and provides intelligent insights.

Many researchers have explored and highlighted the capabilities of AI for
digital forensics, network forensics, and NFR. However, RCEs face persistent
challenges such as data diversity, proliferation, integrity, authorisation issues,
resource constraints, and the volatile nature of data[17]. The black-box nature
and high computational demands of AI models complicate their application for
NFR within RCE. This study aims to address these challenges through the
design and deployment of an optimised AI-based framework for NFR within
RCE, aligned with the ISO/IEC 27043:2015 standard.



4 S. Rizvi et al.

3 Methodology

This section provides a detailed overview of the design and architecture of the
proposed framework. This study follows the Design Science Research (DSR)
methodology [11]. The DSR focusses on the development of a framework that
addresses real-world problems and contributes to scientific knowledge.

3.1 Framework Design

The proposed approach extends beyond algorithmic or conceptual models through
a framework design and implementation for NFR, aligned with the ISO/IEC
27043:2015 standard. The architecture of the proposed AI-based optimised NFR
framework is shown in Figure 1.

Fig. 1. The Proposed AI-based Optimised Network Forensic Readiness Framework
Architecture for Resource-Constrained Environments

The NIDS component is the core feature of the proposed framework. This
component utilises optimised AI models to enhance attack detection capabilities
in RCE. AI models that incorporate both ML and DL approaches were trained
using the CICIoT2023 [13] and CSE-CIC-IDS2018 [4] datasets. Both datasets
were pre-processed using NumPy, Matplotlib, and Pandas by removing dupli-
cates, handling missing/inconsistent values, and removing irrelevant features,
which reduced the number of instances per attack class.



An AI-Based Network Forensic Readiness Framework for RCEs 5

The use of dynamically interchangeable AI models instead of a single con-
ventional model stems from the recognition that each model has its unique char-
acteristics and corresponding performance-to-resource ratio under RCEs. These
trained models are deployed within the RCE, where the framework continuously
monitors resources such as power, memory, and CPU usage. An integrated expert
system dynamically selects the most appropriate AI model based on available
resources to ensure optimal trade-offs between real-time attack detection and
resource utilisation. Upon detection of the attack, the framework activates evi-
dence acquisition components to collect relevant data for forensic analysis. The
DIA component secures the acquired evidence, which is then transmitted to a
server-side environment for validation and secure preservation. Each component
is elaborated in detail in the following subsections.

3.2 Network Intrusion Detection System

The framework’s NIDS component used five ML and four DL algorithms to train
models on the CICIoT2023 and CSE-CIC-IDS2018 datasets. Both ML and DL
approaches were considered after reviewing relevant research that demonstrated
their effectiveness for NIDS within RCE. The ML algorithms used for NIDS
include Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Extreme
Gradient Boosting (XGBoost), and K-Nearest Neighbours (KNN). For DL, the
models included CNN and Recurrent Neural Networks (RNNs). To optimise
these models for RCEs, extensive experiments were conducted by systematically
tuning key hyperparameters such as tree depth, number of estimators, learning
rate, maximum features, number of layers, filter sizes, kernel sizes, activation
functions, dropout rates, and dilation rates to achieve the best performance.

Convolutional Neural Networks The CNN models, 1D Convolutional Neural
Network (1D-CNN) and 1D-Dilated Convolutional Neural Network (1D-DCNN),
were used to develop DL-based NIDS. These models account for the sequential
nature of network traffic and extract spatial features from hierarchical struc-
tures such as TCP connections, flows, sessions, services, and hosts. 1D-DCNN
captures a broader context that helps to reduce processing time without signif-
icantly increasing computational costs. This characteristic of 1D-DCNN makes
it suitable for real-time NIDS in RCE.

The 1D-CNN architecture begins with convolutional layers using 32 filters to
capture localised patterns that result in a tensor shape (None, 10, 32). A max-
pooling layer was added to reduce the dimensions while keeping key features.
This results in an output shape of (None, 5, 32) for better computational effi-
ciency. Another convolutional layer with 64 filters was added to extract complex
features that help to enhance feature representation and classification accuracy,
reducing the sequence length to 3 and generating an output shape of (None, 3,
64). A flattening layer then converts the output into one-dimensional vectors.
In the end, a dense layer was added along with a softmax activation function to
perform classification.



6 S. Rizvi et al.

The 1D-DCNN includes a convolutional layer with 32 filters, kernel size 1,
and dilation rate of 2 to extract patterns and expand contextual scope, followed
by another convolutional layer with 64 filters, kernel size 1, and dilation rate 8.
These layers effectively handle feature extraction and representation. A flatten-
ing layer was added to reshape the output for integration with a dense layer,
which uses softmax activation for classification. The Adam optimiser is used to
minimise the loss function during neural network training.

Recurrent Neural Networks RNNs extend the feedforward networks with a
hidden recurrent state. This includes temporal information through backprop-
agation over time. However, challenges such as vanishing gradients and high
computational costs arise when processing long sequences. To address these, the
Long Short Term Memory (LSTM) introduces a gating mechanism for longer
memory and better control over weight updates. Another model is called GRU,
a simpler variant of LSTM. GRU uses fewer parameters, making it faster and
less computationally expensive. GRU utilises two gates: the update gate and the
reset gate, which enable efficient retention of long-term dependencies in data.
This design overcomes the limitations of traditional RNNs in handling sequen-
tial information. After an in-depth analysis of both mechanisms, the proposed
optimised architectures used a reduced number of layers. This ensures compu-
tational efficiency and scalability for real-time applications.

The LSTM architecture is composed of an LSTM layer with the shape of
(None, 64), where None indicates the variable batch size and 64 represents the
number of output units. This layer has a total of 19,712 trainable parameters.
Considering resource constraints, the architecture does not feature more hidden
layers; instead, it is composed of a dense layer with an output shape of (None,
10) and 650 trainable parameters. The dense layer used the softmax activation
function, which converts the learnt information into class probabilities.

The optimised GRU model followed an architecture similar to that of the
proposed LSTM model, which is a single hidden layer and a dense layer. However,
it used fewer trainable parameters compared to LSTM. The hidden GRU layer
with a shape of (None,64) has 14,976 trainable parameters. This layer determines
whether to retain or discard information from previous steps. The dense layer has
an output shape (None, 10) with 650 parameters. This layer performs the attack
classification based on the features learnt through the previous GRU layer.

Machine Learning Algorithms A systematic experimental methodology was
implemented that involved training and evaluation of the most widely used al-
gorithms, such as DT, RF, NB, KNN, and XGBoost, on both CICIoT2023 and
CSE-CIC-IDS2018 datasets. Many ML models, including Logistic Regression,
Linear Regression, K-means, and Support Vector Machine (SVM) were excluded
from consideration during the experiments due to suboptimal performance or ex-
cessive detection time in preliminary testing on RCEs. Hyperparameter tuning
and feature selection are important to achieve desirable results. Hyperparameter
tuning for the selected ML algorithms was performed using the GridSearchCV



An AI-Based Network Forensic Readiness Framework for RCEs 7

function. GridSearchCV performs a search through a predefined grid of hy-
perparameters using cross-validation. This process identifies optimal parameter
combinations that maximise model performance while mitigating the risk of over-
fitting. The process involved defining relevant hyperparameters for each model,
such as regularisation parameters, scaling values, solver algorithms, tree depth,
and the number of neighbours. For example, in hyperparameter tuning of the
RF model, key parameters that are considered to achieve the best results are the
number of estimators, the maximum features per split and the splitting criteria
that were systematically optimised. The models were evaluated on the datasets
after hyperparameter tuning.

3.3 Evidence Acquisition

The evidence acquisition component of the framework is used to collect times-
tamped critical evidence upon attack detection. The collected evidence is or-
ganised into the following four categories: 1) system metadata containing the
operating system and its version, architecture, processor cores, system uptime,
timestamp, log-in history, and user information; 2) event and resource logs in-
cluding memory dumps, system logs, event timelines, application logs, scheduled
tasks, and resource usage; 3) network data comprising active network connec-
tions, network activity, network statistics, network connectivity, connected de-
vices, device location, ARP tables, and captured network traffic (PCAP files);
and 4) processes lists containing associated commands and user data, page ta-
bles, and kernel modules.

3.4 Data Integrity and Authentication

The DIA component of the proposed framework ensures compliance with legal
requirements and forensic principles for admissible evidence, according to the
ISO/IEC 27043:2015 standard. After the acquisition of evidence, a hash value
is generated from the collected evidence using SHA-256 [12]. The hash value is
then encrypted using a Rivest-Shamir-Adleman (RSA) private key [14]. On the
server side, the DIA component verifies the digitally signed evidence using the
corresponding public key, confirming that the evidence has not been tampered
with and originates from a trusted source.

3.5 Forensic Analysis

The forensic analysis component of the framework is responsible for preserving
evidence on a server after implementing DIA To examine the preserved evidence,
Volatility and Wireshark were used to perform memory forensics and network
traffic analysis.



8 S. Rizvi et al.

4 Implementation and Results

The experiments comprehensively evaluate the framework on different RCEs and
network attack scenarios. The evaluation involves a conscientious alignment of
the proposed framework with the ISO/IEC 27043:2015 standard. As depicted
in Figure 1, the proposed framework uses two environments, the server-side
environment and RCE.

Server-Side Environment The server environment uses macOS 14.0 with
a 3.49 GHz ARM-based processor and 16GB LPDDR5 RAM. AI models were
developed in Python 3.11.5 using Keras, TensorFlow, and scikit-learn. All models
were trained, optimised, and tested on the server prior to deployment in RCEs.
The server also acted as a secure repository for evidence preservation using
digital signing to ensure data integrity and authenticity (DIA), and supported
forensic examination and analysis.

Resource Constrained Environments Multiple RCEs were emulated via
Docker containers [10], replicating five devices: Raspberry Pi Zero 2 W, Rasp-
berry Pi 3B+, ODROID-C2, Orange Pi 4, and NVIDIA Jetson Nano. All devices
used Linux-based operating systems, as detailed in Table 1.

Table 1. Hardware specifications of devices used for simulation

Device Name Memory
(MB)

Storage (GB) CPU (GHz) Power Usage (W) Processor

Raspberry Pi Zero 2 W 512 8 1.00 1.50 ARM Cortex-A53
Raspberry Pi 3B+ 1024 16 1.40 5.00 ARM Cortex-A53
ODROID-C2 2048 16 1.50 3.00 ARM Cortex-A53
Orange Pi 4 3072 16 1.80 7.00 Cortex-A72 + Cortex-A53
NVIDIA Jetson Nano 4096 16 1.43 10.00 Cortex-A57 MPCore

To evaluate the robustness of the proposed framework, various attack traf-
fic scenarios were simulated and transmitted to RCEs. The deployment of the
proposed framework was implemented using Python 3.9.2, supported by vari-
ous libraries such as Keras, TensorFlow, Scikit-learn, Pandas, Pyshark, Scapy,
LiME, and cryptography. The Kafka stack was integrated to facilitate real-time
streaming data pipelines and enable the deployment of a real-time NIDS.

4.1 Simulated Network Attack Traffic

Real-time network attack traffic generated using Scapy. Scapy was used to con-
struct, decrypt, send, capture, and analyse packets using various protocols. The
experiment replicated seven attack types from the CICIoT2023 dataset: DDoS,
Brute Force, Spoofing, DoS, Reconnaissance, Web-based, and Mirai. Each attack



An AI-Based Network Forensic Readiness Framework for RCEs 9

category included multiple scenarios. For example, web-based attacks included
SQL injection, command injection, and Cross-Site Scripting (XSS).

In addition, a composite attack scenario randomly simulated seven attack
types, automating the process to reveal the most effective method mix for
broader and more potent threats. This setup assessed AI models and RCE be-
haviour when multiple attackers launched diverse assaults from different sources.

4.2 Network Intrusion Detection System

The first line of defence of the framework is the NIDS, where AI models were
initially trained and evaluated within a server-side environment to develop op-
timised models. DL models were evaluated by monitoring accuracy and loss in
both training and validation sets at each epoch. This facilitates effective anomaly
detection within RCE in real-time data.

The model is compiled with an Adam optimiser and sparse categorical cross-
entropy loss function. Adam optimiser was selected due to its adaptive estima-
tion capabilities and low memory requirements, whereas cross entropy accurately
evaluates the divergence between various attack types. Early stopping, a regular-
isation technique, was used to improve the ability of the DL model to generalise
by avoiding excessive adaptation to the training data. This technique is inte-
grated to determine the optimal point at which to stop the training process.
The early stopping approach monitors the model’s performance using a holdout
validation set and a metric, such as loss, to ensure training stops when there is
no further improvement.

In general, the RF model demonstrated the best performance among the se-
lected models on the CICIoT2023 dataset. It achieved 99.58% accuracy, with pre-
cision and recall scores of 0.996 and an F1 score of 0.996. RF required 222.205 s
to train with a prediction time of 2.243 s. However, considering resource utilisa-
tion and bandwidth constraints within RCE, the DT model outperformed RF.
DT achieved an accuracy of 99.47% along with precision, recall, and F1 scores of
0.995. The DT model required significantly less time compared to RF. DT used
13.154 s to train the model and just 0.032 s for prediction, as shown in Table 2.

Among the DL models on the CICIoT2023 dataset, GRU outperformed the
other DL models. GRU achieved 99.03% accuracy, with precision, recall, and
F1 scores of 0.990. GRU required 202.856 s for training and 8.157 s for predic-
tion across different attack types. LSTM model followed closely and achieved a
slightly better accuracy of 99.05% with precision, recall, and F1 scores of 0.990,
0.991, and 0.990, respectively. However, LSTM demanded 226.543 s for training
and a slightly longer prediction time of 9.001 s compared to GRU. The prediction
time is crucial to deploy AI models for real-time NIDS within RCE.

On the CSE-CIC-IDS2018 dataset, DL models outperformed ML models
across all evaluation metrics, including accuracy, precision, recall, and F1 score.
Among the DL models, the 1D-DCNN demonstrated the best performance,
achieving an accuracy of 99.99%, a precision of 1.000, recall of 0.991, and an
F1 score of 0.996. ML models generally require less time for both training and
prediction. KNN had the shortest training time at 0.073 s but exhibited the



10 S. Rizvi et al.

Table 2. Performance Comparison of Optimised AI Models on CICIoT2023 and CSE-
CIC-IDS2018 Datasets

CICIoT2023 CSE-CIC-IDS2018

Model Acc. (%) Prec. Recall F1 Train (s) Pred (s) Acc. (%) Prec. Recall F1 Train (s) Pred (s)

DT 99.47 0.995 0.995 0.995 13.154 0.032 96.89 0.969 0.968 0.969 5.506 0.008

RF 99.58 0.996 0.996 0.996 222.205 2.243 97.11 0.969 0.971 0.970 43.776 0.417

KNN 99.19 0.992 0.992 0.992 0.339 1250.771 95.42 0.944 0.954 0.945 0.073 45.346

NB 78.40 0.685 0.784 0.712 0.821 0.466 16.20 0.851 0.162 0.216 0.147 0.062

XGB 99.49 0.995 0.995 0.995 138.793 0.991 98.03 0.980 0.980 0.978 23.133 1.045

LSTM 99.05 0.990 0.991 0.990 226.543 9.001 99.88 1.000 0.998 0.999 26.559 0.909

GRU 99.03 0.990 0.990 0.990 202.856 8.157 99.88 1.000 0.998 0.999 26.559 0.858

1D-CNN 98.91 0.989 0.989 0.988 978.648 17.634 99.87 0.998 0.998 0.998 213.575 2.896

1D-DCNN 98.98 0.990 0.990 0.989 461.419 15.248 99.99 1.000 0.991 0.996 80.651 1.694

highest prediction time 45.346 s, due to its instance-based architecture that re-
lies on distance calculations during inference. NB followed, with a training time
of 0.147 s and prediction time of 0.062 s; however, it achieved the lowest accuracy
among all models, with only 16.20%. Among the DL models, GRU stood out for
its efficiency, requiring just 26.559 s for training and 0.858 s for prediction while
still delivering strong performance, as shown in Table 2.

4.3 Framework Deployment

The proposed framework was deployed on various simulated devices to determine
its performance within RCE.

The proposed framework was deployed on various simulated devices to eval-
uate its performance within RCE. Network attack traffic was generated using
seven distinct attack types, with each attack simulated on different devices. For
consistency, each attack type included 500 network packets of uniform packet size
to allow a controlled evaluation of the performance of the framework in terms of
attack detection, evidence acquisition, and resource utilisation. Extensive exper-
iments were conducted to gather the essential knowledge for the development of
the expert system, which is integrated as a component of the proposed frame-
work. This knowledge enables the expert system to identify the most appropriate
AI model based on the available resources within RCE. The results of the simu-
lated reconnaissance attack on 5 different devices are shown in Table 3. Similar
results were obtained when simulating other attacks on various devices.

The primary objective of these experiments is to dynamically select the most
appropriate AI model based on the available resources. If sufficient resources
were not available, the framework refrained from engaging AI-based NIDS and
allowed the RCE to prioritise its primary task.

In general, the DT model demonstrated better performance in terms of re-
source utilisation, detection time, and evidence collection. DT required only
16.5% of CPU usage and 276 MB of memory to process 500 network packets
associated with suspicious activity. In addition, the DT model presented excep-
tional real-time capabilities by detecting a single attack packet in 0.3 ms and



An AI-Based Network Forensic Readiness Framework for RCEs 11

Table 3. AI Models Resource Utilisation on Raspberry Pi-3B+ Device for Reconnais-
sance Attack on 500 Network Packets

Device Model Time

Model C
P

U
U

sa
ge

(%
)

M
em

or
y

U
sa

ge
(M

B
)

P
ow

er
U

sa
ge

(m
W

)

C
P

U
U

sa
ge

(%
)

M
em

or
y

U
sa

ge
(M

B
)

P
ow

er
U

sa
ge

(m
W

)

D
et

ec
ti

on
T

im
e

p
er

P
ac

ke
t

(s
)

T
ot

al
D

et
ec

ti
on

T
im

e
(s

)

M
em

or
y

D
u
m

p
T

im
e

(s
)

DT 18.8 597 114.0 16.5 276 57.1 0.0003 0.1659 2.91

RF 28.3 638 95.0 24.4 398 55.1 0.0014 0.9287 3.46

KNN 87.2 857 267.0 84.5 694 138.0 0.0674 38.1184 4.07

NB 22.1 597 89.7 16.9 269 47.1 0.0003 0.1833 3.59

XGB 20.3 590 104.0 17.1 279 54.2 0.0004 0.2401 3.10

LSTM 53.3 588 103.0 47.7 315 65.4 0.0371 20.6388 3.00

GRU 52.4 582 106.0 47.6 320 65.2 0.0455 20.3733 2.98

1D-CNN 51.7 576 95.8 47.0 319 57.0 0.0393 20.3423 5.32

1D-DCNN 53.6 598 80.2 46.9 314 50.9 0.0404 20.2980 2.98

0.1659 s for 500 network packets with high accuracy. DT also consumed min-
imal power during attack detection, which makes it highly efficient for RCEs.
The RF model followed DT in performance but required slightly more compu-
tational resources. RF consumed 24.4% of CPU and 398 MB of memory while
achieving a detection time of 0.0014 s per packet and 0.9287 s for 500 network
packets. Although RF required more computational resources, its performance
remained competitive, making it suitable for scenarios where additional resources
are available.

In the case of DL models, resource utilisation and detection times were rel-
atively similar across all models. However, the 1D-DCNN model outperformed
other DL models in terms of efficiency. It utilised 46.9% CPU and 314 MB of
memory, consuming 50.9 mW of power to detect a network attack packet. On
average, 1D-DCNN required 0.0404 s per packet and processed 500 packets in
20.2980 s.

These findings highlight the trade-offs between computational efficiency and
detection capabilities in different models, providing valuable insights into select-
ing the most appropriate AI model based on the available resources in RCE.

Extensive Testing To evaluate the scalability of the proposed framework, a
series of experiments were conducted that analysed its performance based on the
varying volume of network packets. The experiments were carried out on the five



12 S. Rizvi et al.

aforementioned devices, with the number of packets gradually increasing from
500 to 5000. DT and GRU models were selected to evaluate performance, and
the results of the experiments are presented in Table 4 and Table 5, respectively.

Table 4. DT Performance with Various Number of Network Packets on Raspberry
Pi-3B+ Real-Time Network Traffic

N
o

of
P
ac

ke
ts

F
ea

tu
re

s
E
xt

ra
ct

io
n

T
im

e
(s

)

P
ac

ke
t

S
iz

e
(B

yt
es

)

D
et

ec
ti

on
T

im
e

(s
)

T
ot

al
T

im
e

W
it

h
A

I
(s

)

T
ot

al
T

im
e

W
it

h
ou

t
A

I
(s

)

B
an

d
w

id
th

W
it

h
A

I
(M

b
p
s)

B
an

d
w

id
th

W
it

h
ou

t
A

I
(M

b
p
s)

P
ow

er
C

on
su

m
p
ti

on
(m

W
)

M
em

or
y

D
u
m

p
T

im
e

(s
)

M
ax

M
em

or
y

U
ti

li
sa

ti
on

(M
B

)

500 1.31 417,853 0.20 2.18 0.88 1.45 10.45 107 2.98 687

1000 2.32 864,580 0.33 4.12 1.80 1.60 3.67 205 3.39 717

2000 5.12 1,685,576 0.64 8.68 3.56 1.48 3.61 252 3.84 727

3000 7.74 2,524,791 0.97 12.89 5.15 1.49 3.74 333 4.15 733

4000 10.72 3,357,845 1.31 17.52 6.81 1.46 3.76 350 5.76 740

5000 14.20 4,234,019 2.00 22.97 8.77 1.41 3.68 326 3.67 756

The experiments considered critical factors such as network traffic, time,
computational resources, and bandwidth utilisation, both with and without AI
integration. The results demonstrated that as the number of packets increased,
the processing time per packet remained relatively similar. The comparative
results highlight the ability of the proposed framework to handle larger network
traffic efficiently.

The dynamic selection of AI models based on available resources was evalu-
ated through multiple tests. A simulated application was developed using Python
that utilised interactive sliders that enable dynamic adjustment of resource util-
isation. The testing also validated that if RCE requires exceeded computational
resources for its primary task, the framework would bypass attack detection and
evidence collection to ensure uninterrupted operation. After the simulated ap-
plication, different resource-intensive applications were executed within RCE to
observe their impact on model selection in real time.



An AI-Based Network Forensic Readiness Framework for RCEs 13

Table 5. GRU Performance with Various Number of Network Packets on Raspberry
Pi-3B+ Real-Time Network Traffic

N
o

of
P
ac

ke
ts

F
ea

tu
re

s
E
xt

ra
ct

io
n

T
im

e
(s

)

P
ac

ke
t

S
iz

e
(B

yt
es

)

D
et

ec
ti

on
T

im
e

(s
)

T
ot

al
T

im
e

W
it

h
A

I
(s

)

T
ot

al
T

im
e

W
it

h
ou

t
A

I
(s

)

B
an

d
w

id
th

W
it

h
A

I
(M

b
p
s)

B
an

d
w

id
th

W
it

h
ou

t
A

I
(M

b
p
s)

P
ow

er
C

on
su

m
p
ti

on
(m

W
)

M
em

or
y

D
u
m

p
T

im
e

(s
)

M
ax

M
em

or
y

U
ti

li
sa

ti
on

(M
B

)

500 1.34 417,853 20.65 2.22 0.88 1.44 3.64 128 4.01 644

1000 2.25 864,580 42.42 4.05 1.80 1.63 3.67 168 3.11 674

2000 5.10 1,685,576 81.24 8.67 3.56 1.48 3.61 283 3.85 709

3000 9.46 2,524,791 129.16 14.62 5.15 1.32 3.74 340 3.19 708

4000 12.23 3,357,845 175.54 19.04 6.81 1.35 3.76 335 3.08 784

5000 16.79 4,234,019 213.64 25.57 8.77 1.26 3.68 345 3.61 717

Real-Time Feature Extraction The feature extraction module in the pro-
posed framework was deployed for real-time feature extraction after network
traffic capture. This module is capable of processing network packets from IEEE
802.11 (WiFi), Ethernet, and Zigbee communication standards. These commu-
nication standards were selected to ensure real-time compatibility with the IoT
network, as the majority of IoT devices use these protocols for data transmission.

The module extracts features from three key protocols: TCP/IP (Transmis-
sion Control Protocol/Internet Protocol), UDP (User Datagram Protocol), and
ARP, which identify the essential attributes of the network packet data for po-
tential attack detection. After processing PCAP-stored packets, it derives the
same 40 features used to train the ML and DL models, structuring them into in-
put vectors according to the expected model input shape. These are streamed in
real time via Kafka, where producers transmit them to consumers for AI-based
attack detection, which returns a numeric class label representing the predicted
attack type. This design ensures minimal impact on network bandwidth during
prediction. Upon detection, the Kafka consumer activates the evidence acquisi-
tion component.

Evidence Acquisition Evidence acquisition is the crucial component of the
framework to ensure a comprehensive and systematic collection of evidence
within the RCE. The process begins with the collection of system metadata



14 S. Rizvi et al.

that includes evidence files containing user information (active users and login
history with timestamps) and system details such as timestamps, operating sys-
tem specifications, machine architecture, physical cores, and memory statistics
(total and available memory). After collecting system metadata, the component
collects detailed event and resource logs. These logs include a system log file
that records all events, requests, and activities on the system, an event time-
line file to establish when specific events occurred, an application log file that
provides behavioural information about running software, and a scheduled tasks
file that documents tasks set to execute at defined times. Memory-related ev-
idence is also collected, including memory dump files (snapshots of physical
memory at a given moment) and a page table file that includes buffered and
cached memory, swap memory, active and inactive memory, paging information,
kernel memory usage, and system parameters such as CommitLimit, Commit-
ted_AS,VmallocTotal, and VmallocUsed. The memory detail provides valuable
insights into the system’s run-time state and resource use at the time of evidence
collection.

The component also captures network-related data to provide network activ-
ity on RCE. This includes PCAP files that sequentially record network packets, a
connected device file that contains information about connected devices and de-
tails about the kernel IP routing table, an active connection file consisting of IP
addresses, port numbers, and the statuses of active connections, and a file of net-
work connectivity that includes IP addresses, subnet masks, and MAC addresses
for network interfaces. The geolocation data file provides the longitude, latitude,
and address of the devices. In the end, the framework gathers process-related
information, including a process list file that provides details of active processes
along with their usernames, process IDs (PIDs), names, and command-line argu-
ments, and a kernel module information file that outlines installed modules, their
sizes, and dependencies. This comprehensive collection ensures that no critical
aspect of the state or activity of the system is overlooked. Once the evidence
collection process is complete, the framework triggers the DIA component.

Data Integrity and Authentication In the RCE, the DIA component gen-
erated unique private and public keys after attack detection and evidence collec-
tion. SHA-256 was used to create a unique hash for each evidence file mentioned
in Section 4.3. The private key was used to encrypt the hash to generate digitally
signed evidence.

In the server-side environment, the signed evidence was decrypted using the
corresponding public key to retrieve the original hash value. Simultaneously, the
SHA-256 hash was compared to the received evidence hash value to verify that
the evidence had not been tampered with. This process validated the integrity
of the evidence to ensure that it was in accordance with the standards and ad-
missibility of the evidence in legal proceedings. After the evidence was validated,
it was stored on a server for forensic analysis.



An AI-Based Network Forensic Readiness Framework for RCEs 15

5 Discussion

The adaptability of RCEs is rapidly increasing due to cost-effective hardware
and widespread connectivity. However, their inherent vulnerabilities, such as
outdated security, weak authentication, minimal security considerations during
development, insecure network services, etc., make them more vulnerable to in-
filtration than traditional computing systems. The evolving threat landscape
continues to challenge effective digital forensic investigations in RCEs. Despite
existing forensic tools, the complex architecture of RCE demands innovative
solutions to bridge the gap between ideal forensic procedures and real-world
constraints. AI models have been adopted for the detection and analysis of cy-
bersecurity incidents. However, AI-based forensic readiness faces challenges in
RCE due to resource constraints, power consumption, and the effects on net-
work bandwidth. The proposed AI-based optimised NFR framework improves
forensic readiness by automating incident detection and response. This reduces
response time, minimises human intervention, and improves attack detection,
evidence acquisition, preservation, and analysis. Quantitative simulation helps
the framework to dynamically select the most appropriate AI model based on
the available resources, including CPU, memory, and power. The framework
is designed to capture and process network packets to extract features for AI
models from different communication standards and protocols in real time. Its
versatility and scalability make it compatible with most RCEs. The framework
prioritises strategic planning, as discussed in ISO/IEC 27043:2015. It integrates
attack detection, evidence acquisition, validity checks, and secure evidence stor-
age to ensure comprehensive tamper-proof digital evidence for legal proceedings.

Real-Time Deployment Feasibility in Resource-Constrained Environ-
ment The effectiveness of real-time NFR depends not only on detection accu-
racy, but also on its ability to identify attacks promptly, since evidence collec-
tion begins immediately after detection. Lightweight AI models that can run on
RCEs and detect attacks promptly are essential; any delay can lead to critical
packet loss and missed forensic evidence, ultimately compromising the proactive
approach. Shoukat et al. [22] reported detection times of 0.079 ms, 0.087 ms,
0.084 ms on N-BaIoT, Edge-IIoTset, and CIC-IDS2017 using a hardware config-
uration of an Intel Core i5-6200U CPU @ 2.30 GHz, 12 GB RAM. However, this
study did not evaluate performance on constrained devices such as the Rasp-
berry Pi Zero 2 W. Wang et al. [27] reported a detection time of 0.0172 ms and
achieved an accuracy of 99.90% on the CSE-CIC-IDS2018 dataset. However, the
authors did not evaluate their model on low-end devices.

In comparison, the proposed framework achieved detection times of 0.3 ms
per packet on real-time traffic and was successfully deployed on a variety of
resource constrained devices, as listed in Table 1. The offline evaluation further
showed 0.00019 ms and 0.001 ms detection times on CICIoT2023 and CSE-CIC-
IDS2018 datasets. The comparison of the proposed framework with the existing
state-of-the-art is shown in Table 6.



16 S. Rizvi et al.

Table 6. Proposed Model Performance Comparison with Existing Studies

Ref. Low-End
Device

Dataset Acc. (%) Train (s) Detect (ms) Pwr Usage
(mW)

Shoukat et al. [22] ✗ CIC-IDS2017 98.57 – 0.084 –

Vellela et al. [24] ✗ CSE-CIC-IDS2018 99.30 882.00 – –

Zhang et al. [27] ✗ CSE-CIC-IDS2018 99.90 74.88 0.0172 –

Seth et al. [20] ✗ CSE-CIC-IDS2018 97.72 5.06 0.13801 –

ElSayed et al. [6] ✓ CICIoT2023 93.60 – – 7500

Kharoubi et al. [9] ✗ CICIoT2023 99.17 – 0.060 –

Alzahrani et al. [1] ✓ CICIoT2023 99.10 – 6760.00 6040

Wang et al. [26] ✗ CICIoT2023 93.13 708.40 6.40 –

Proposed Model ✓ CICIoT2023 99.58 222.20 0.00019 114

Proposed Model ✓ CSE-CIC-IDS2018 99.99 80.65 0.00100 635

5.1 Limitations and Future Work

An AI-based optimised NFR framework was introduced, demonstrating robust-
ness, accuracy, integrity, and authentication. However, certain design and testing
limitations should be acknowledged. The framework was not deployed on real
devices, so future research should involve implementing and evaluating it on rep-
resentative devices to validate its performance in realistic settings. The privacy
of data collected during forensic investigations is beyond the scope of this study.
The time required for dynamic model selection is not addressed and will be ex-
plored in future work. Additionally, the proposed approach relied on TensorFlow
and Kafka, which require more computational resources than lightweight options,
e.g., MQTT and TensorFlow Lite. Future implementations should consider AI
frameworks customised for RCEs.

6 Conclusion

This paper introduces an AI-based optimised NFR framework for RCE. The
framework integrates five ML and four DL models for attack detection, followed
by evidence collection that is categorised into system metadata, event and re-
source logs, network data, and process information. The proposed framework
achieved an optimal balance between the use of computational resources, the
bandwidth of the network, and the accurate detection of attacks. The expert
system was integrated, which utilised the knowledge of extensive experiments
carried out in different simulated environments to find the appropriate AI model
for attack detection based on available computational resources on RCE. The
DIA component of the framework effectively validated the evidence using a ro-
bust digital signing technique. This ensures that the evidence remains unma-
nipulated and admissible for legal proceedings. The framework was designed
and developed to enhance the NFR standard outlined in ISO/IEC 27043:2015
through the application of AI.



Bibliography

[1] Alzahrani, H., Sheltami, T., Barnawi, A., Imam, M., YASAR, A.: A
Lightweight Intrusion Detection System using Convolutional Neural Net-
work and Long Short-Term Memory in Fog Computing (2024)

[2] Atlam, H.F., Alenezi, A., Alassafi, M.O., Alshdadi, A.A., Wills, G.B.: Se-
curity, Cybercrime and Digital Forensics for IoT, pp. 551–577. Springer
International Publishing, Cham (2020)

[3] Breitinger, F., Hilgert, J.N., Hargreaves, C., Sheppard, J., Over-
dorf, R., Scanlon, M.: DFRWS EU 10-Year Review and Fu-
ture Directions in Digital Forensic Research. Forensic Sci-
ence International: Digital Investigation 48, 301685 (03 2024).
https://doi.org/https://doi.org/10.1016/j.fsidi.2023.301685

[4] Canadian Institute for Cybersecurity: A Realistic Cyber Defense
Dataset (CSE-CIC-IDS2018), https://registry.opendata.aws/
cse-cic-ids2018/, last accessed 02 June 2022.

[5] Darabseh, A., Kbar, G., Almulhem, A.: Network Forensics Readiness: A
Survey. Journal of Digital Forensics, Security and Law 11(2), 61–76 (2016)

[6] ElSayed, Z., Elsayed, N., Bay, S.: A Novel Zero-Trust Machine Learning
Green Architecture for Healthcare IoT Cybersecurity: Review, Analysis,
and Implementation. In: SoutheastCon 2024. pp. 686–692 (2024)

[7] Fagbola, F.I., Venter, H.S.: Smart Digital Forensic Readiness
Model for Shadow IoT Devices. Applied Sciences 12(2) (2022).
https://doi.org/10.3390/app12020730

[8] Kebande, V.R., Mudau, P.P., Ikuesan, R.A., Venter, H., Choo, K.K.R.:
Holistic Digital Forensic Readiness Framework for IoT-enabled Organiza-
tions. Forensic Science International: Reports 2, 100117 (2020)

[9] Kharoubi, K., Cherbal, S., Mechta, D., Gawanmeh, A.: Network Intrusion
Detection System Using Convolutional Neural Networks: NIDS-DL-CNN
for IoT Security. Cluster Computing 28(4), 219 (2025)

[10] Merkel, D.: Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment. Linux Journal (239), 2 (2014)

[11] Montasari, R., Carpenter, V., Hill, R.: A road map for digital forensics re-
search: a novel approach for establishing the design science research process
in digital forensics. International Journal of Electronic Security and Digital
Forensics 11(2), 194–224 (2019)

[12] National Institute of Standards and Technology: Secure Hash Standard.
Federal Information Processing Standards Publication FIPS PUB 180-4,
U.S. Department of Commerce (2015)

[13] Neto, E.C.P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., Ghorbani,
A.A.: CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale
Attacks in IoT Environment. Sensors 23(13) (2023)



18 S. Rizvi et al.

[14] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (Feb
1978). https://doi.org/10.1145/359340.359342

[15] Rizal, R., Selamat, S.R., Mas’ud, M.Z., Widiyasono, N.: Enhanced Readi-
ness Forensic Framework for the Complexity of Internet of Things (IoT)
Investigation Based on Artificial Intelligence. Journal of Advanced Research
in Applied Sciences and Engineering Technology 50(1), 121–135 (2025)

[16] Rizvi, S., Scanlon, M., Mcgibney, J., Sheppard, J.: Application of Artificial
Intelligence to Network Forensics: Survey, Challenges and Future Directions.
IEEE Access 10, 110362–110384 (2022)

[17] Rizvi, S., Scanlon, M., McGibney, J., Sheppard, J.: Deep learning based net-
work intrusion detection system for resource-constrained environments. In:
Digital Forensics and Cyber Crime. pp. 355–367. Springer Nature Switzer-
land, Cham (2023)

[18] Rizvi, S., Scanlon, M., McGibney, J., Sheppard, J.: Pushing network forensic
readiness to the edge: A resource constrained artificial intelligence based
methodology. In: 2024 Cyber Research Conference - Ireland (Cyber-RCI).
pp. 1–8 (2024). https://doi.org/10.1109/Cyber-RCI60769.2024.10939120

[19] Sadineni, L., Pilli, E.S., Battula, R.B.: Ready-IoT: A Novel Forensic Readi-
ness Model for Internet of Things. In: 2021 IEEE 7th World Forum on
Internet of Things (WF-IoT). pp. 89–94 (2021)

[20] Seth, S., Singh, G., Kaur Chahal, K.: A Novel Time Efficient Learning-based
Approach for Smart Intrusion Detection System. Journal of Big Data 8(1),
111 (2021)

[21] Shahin, M., Maghanaki, M., Hosseinzadeh, A., Chen, F.F.: Advancing Net-
work Security in Industrial IoT: A Deep Dive into AI-Enabled Intrusion
Detection Systems. Advanced Engineering Informatics 62, 102685 (2024)

[22] Shoukat, S., Gao, T., Javeed, D., Saeed, M.S., Adil, M.: Trust my IDS: An
Explainable AI Integrated Deep Learning-based Transparent Threat Detec-
tion System for Industrial Networks. Computers & Security 149, 104191
(2025)

[23] Valjarević, A., Venter, H., Petrović, R.: ISO/IEC 27043: 2015—Role and
Application. In: 2016 24th Telecommunications Forum (TELFOR). pp. 1–
4. IEEE (2016)

[24] Vellela, S.S., D, R., Purimetla, N.R., Thalakola, S., Vuyyuru, L.R., Vatam-
beti, R.: Cyber Threat Detection in Industry 4.0: Leveraging GloVe and
Self-ttention Mechanisms in BiLSTM for Enhanced Intrusion Detection.
Computers and Electrical Engineering 124, 110368 (2025)

[25] Waguespack, K.M., Smith, K.J., Muliri, O.A., Vijayakanthan, R., Ali-
Gombe, A.: MARS: The First Line of Defense for IoT Incident Response.
Forensic Science International: Digital Investigation 49, 301754 (2024)

[26] Wang, Z., Chen, H., Yang, S., Luo, X., Li, D., Wang, J.: A Lightweight
Intrusion Detection Method for IoT Based on Deep Learning and Dynamic
Quantization. PeerJ Computer Science 9, e1569 (2023)

[27] Zhang, H., Zhang, B., Huang, L., Zhang, Z., Huang, H.: An Efficient Two-
Stage Network Intrusion Detection System in the Internet of Things. Infor-
mation 14(2) (2023). https://doi.org/10.3390/info14020077


