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The extent to which cyber crimes are now being executed has reached
a frequency that has never been observed before. To detect these events
and extract relevant network artifacts for investigations, network foren-
sics has long been the de-facto approach. However, the time and data
storage necessary to perform traditional forensic procedures has put in-
vestigators at odds, often resulting in substantial artifact extraction la-
tency and poor incident response. To mitigate what have now become
inherent pitfalls for the forensics community, we propose a novel means
of transforming network forensics to a procedure that functions at line
rate, while the event of interest is taking place, by harnessing the new-
found programmable switch technology.
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Amid the prevailing cyber-crime themes dominating today’s head-
lines are Distributed Denial of Service (DDoS) activities and the mis-
use of Internet of Things (IoT) devices. To this end, we implement
two switch-based use cases for conducting the relevant network forensics
associated with each of these classes of misdemeanors, respectively. In
particular, the first use case employs dynamic thresholds generated from
real-time artifact statistics extracted by the switch to infer contempo-
rary DDoS attacks. The empirical results confirm that the proposed
approach mitigates UDP amplification at line rate and SYN flooding
attacks within a fraction of a second. Moreover, the complete remedi-
ation time of slow DDoS is reduced from near 10 seconds down to 2
seconds. The second use case instruments the switch with a rule-based
Projective Adaptive Resonance Theory (PART) algorithm to accurately
fingerprinting the origin IoT device of network traffic from a single TCP
packet at line rate. We also provide a methodology for automating the
translation of such rule-based Machine Learning (ML) output to P4 pro-
grams, thereby enabling its deployment without the need for additional
background expertise. The proposed fingerprinting engine was evaluated
against a dataset consisting of devices of both [oT and non-IoT in nature.
The results indicate that such devices can be fingerprinted with 99% ac-
curacy. It is our hope that the research undertaken herein not only aids
in the conducting of efficient and effective network forensic procedures
associated with DDoS attacks and IoT devices but also in promoting the
utilization of programmable switches in future forensic research endeav-
ors. Furthermore, we expect that the proposed approach’s automated
translation of rule-based classifiers into P4 code will provoke the subse-
quent harnessing of ML’s pattern recognition abilities for enhancing a
number of other network forensic tasks on the switch.

1. Introduction

A network forensic practitioner’s essential tasks of monitoring, inspecting,
and attributing network traffic to cyber crimes has become increasingly
challenging due to the extent of which such misdemeanors are currently
taking place. Further, these challenges are often compounded by more
sophisticated attacks (e.g., anti-forensic strategies) launched by adversaries.
Several factors have contributed to this increase in cyber crime and attack
sophistication, such as society’s growing dependence upon the Internet ' the
enhanced inter-connectivity amid modern technology 2™ an assortment of
open source exploitation code and tools, widely-available attack services
(e.g., DDoS-for-hire), and even the COVID-19 pandemic.”? Moreover, the
immense rates at which information is transferred between contemporary
machines has led to an exponential increase of data that must be analyzed.
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As a result, the amount of time and resources necessary to conduct effective
investigations has also risen substantially¢

Unfortunately, it is also now commonplace for attackers to leverage
the insecurity of the vast IoT domain for a means of conducting cyber
crime. The excessive heterogeneity of these devices combined with their
expedited deployment by vendors (i.e., leading to subpar security mech-
anisms and patching) has has left adversaries with a plethora of vulner-
abilities to exploit.”! Consequently, a very large uptick in DDoS attacks
has been observed, including some of the largest recorded to date, e.g., the
record-breaking attack on GitHub in 20188 and the majority of the more
pronounced attacks that occurred in 20192 Moreover, such vulnerabilities
have been exploited to conduct a broad range of other malicious endeavors,
ranging from gaining entry to critical infrastructure (e.g., power gridsi")
to adversaries overtaking upwards of a million devices at one juncture to
launch various campaigns (e.g., spam, cryptomining, etc. )12

Ultimately, this extensive attack surface has left the forensic community
with the tall task of investigating and attributing such crimes with largely
offline analysis procedures. To put matters into perspective, a 10 Gbps
flow of traffic using only a two-hour sliding window necessitates 10 TB of
storage, and 20 Gbps utilizing a 12-hour sliding window requiring 1 PB.
Furthermore, these numbers pale in comparison to the large traffic rates
today’s networks often encounter. For example, it has been projected that
backbone networks may experience up to 170 Tbps in 202113 Moreover,
while these time-consuming, offline investigation procedures can eventually
lead to attribution of a cyber crime, the resultant delays in identifying
attacks naturally create challenges for mitigating them while they are in
progress. In addition, these delays give adversaries more time to launch
ensuing attacks, evade prosecution after an attack transpires (e.g., via anti-
forensic attempts, fleeing, etc.), and so forth. In turn, investigators have
the monumental task of monitoring and safeguarding the capture of the
offending traffic amid the overwhelming rates of traffic modern networks
observe. Once this objective has been completed, investigators must subse-
quently analyze the resultant stockpile of capture data for viable artifacts
in a very small time window to ensure a successful investigation, circumvent
anti-forensic attempts, and mitigate damages. Indeed, streamlining aspects
this arduous process would dramatically enhance its effectiveness.

Until very recently, performing these responsibilities at line rate as the
malicious traffic is traversing the wire was largely an impossibility with
the excessive limitations of traditional network implementations. This pit-
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fall is rooted in the fact that the devices handling such traffic are either
software-based or static in nature. In particular, the software-based so-
lutions generally consist of middleboxes, which cannot conduct complex
traffic analysis without substantial degradation to the network’s through-
put. Alternatively, the devices that can offer better processing capabilities
(e.g., switches and routers) customarily have had their behavior encoded
in firmware by vendors and offer extremely limited support for network
forensic endeavors.

Elaborating upon this notion, network topologies generally can be ab-
stracted as being within the control or data plane™® The data plane is
responsible for delivering traffic from one device to another, whereas the
control plane is essentially the brains of the network and is concerned with
establishing links between routers and exchanging protocol information. In
the case of the aforementioned traditional networks, both of these plains are
integrated into the firmware of routers and switches, and therefore these
implementations have relatively fixed behavior. To offer more flexibility,
Software Defined Networking (SDN) was proposed which explicitly decou-
ples the two planes and implements the control plane in software; thus,
SDN effectively transformed what has characteristically been rigid network
functionality into a more efficient and flexible software development proce-
dure. That being said, SDN is still bounded to a small set of forwarding
protocols (e.g., IP, Ethernet) entertained by the data plane, which severely
restricts the number of applications that can be employed which utilize
the enhanced processing capabilities of the data plane’s forwarding devices.
Moreover, an attempt to amend this short list of protocols to implement
additional applications generally requires years of waiting, given the data
plane has characteristically been made up of proprietary devices with closed
source codeX? As a result, SDN has struggled to keep pace with the exces-
sively dynamic nature of cyber crime.

Fortunately, the P4 language has since surfaced as the de-facto standard
for defining the forwarding behavior of data plane. By way of programmable
switches, the software that dictates the behavior of how packets are pro-
cessed can now be developed, tested, deployed, and amended in a much
shorter time span. Moreover, such behavior can finally be strictly governed
by the given network’s operators, resulting in fully customizable implemen-
tations for network forensic practitioners. In harnessing this newfound tech-
nology, the research conducted herein utilizes programmable data planes to
transform the manner in which network forensics has traditionally been
conducted. In particular, programmable switches can identify and extract
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forensic artifacts at line rate in order to bypass storing a wealth of capture
data to subsequently analyze offline. Custom switch-based programs can
also use these extracted artifacts in order to fingerprint malicious events in
real time amid Tbps traffic rates. This is in stark contrast to the software-
based intermediary nodes (i.e., middleboxes) employing Intrusion Detection
Systems (IDS), firewalls, etc., which crumble under the tremendous load of
modern networks.

To this end, the notion of leveraging programmable data planes for net-
work forensics applications is introduced by proposing two such approaches
corresponding to the ever-increasing presence of staggering DDoS attacks
and the harnessing of vulnerable IoT devices for malicious endeavors, re-
spectively. In terms of DDoS, note that it can present itself in many forms
and one detection strategy might only be able to detect a specific type it
was designed for19 For example, while an entropy-related approach might
be effective when a network is experiencing a flooding attack, it likely will
struggle to identify the presence of a stealthier attack. To address this issue,
this work combines multiple novel DDoS fingerprinting techniques into one
unified detection strategy within a P4-programmed switch. Another aspect
of several DDoS detection strategies that can prove problematic is utiliz-
ing static thresholds to identify when an attack is occurring. Typically,
such thresholds need to be calibrated for a particular network’s topology,
its expected traffic, when in the day or week it is used, etc., and can also
be more easily exploited by savvy adversaries. The proposed mechanism
tackles this dilemma by employing dynamic thresholds that adapt to vary-
ing network conditions. To evaluate this strategy, three attack scenarios
were launched, namely, SYN flooding, UDP amplification, and a stealthy
variant, slow DDoS, against the proposed approach deployed on a Behav-
ioral Model version 2 (BMv2)+ software switch. The results confirm that
UDP amplification attacks could be constrained to a dynamically allocated
bandwidth coinciding with the given UDP protocol being leveraged by the
attacker (e.g., NTP, DNS, etc.), at line rate. Additionally, SYN flooding
was shown to be rendered ineffective with benign requests experiencing no
latency, and all other TCP-based DDoS types employing various mixtures
of set flags (e.g., SYN-ACK flood, FIN flood, etc.) were negated entirely.
Finally, the approach was able to restore service to clients endeavoring to
connect to the server within 1 second of the slow DDoS attack consuming
the server’s available connections and to fully remediate the attack by the
following second; this is a substantial difference from past approaches that
wait for the malicious connections with the target server to time out, which
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ultimately takes around 10 seconds or more.
The second approach aims to offer practitioners a means of promptly fin-
gerprinting IoT device traffic on the network. With the increasing instances

181231 such artifacts can

of cyber crime committed by way of these devices,
be invaluable to conducting effective investigations. To perform this objec-
tive on this switch, a rule-based PART learning algorithm was first trained
on the noteworthy dataset proposed by Sivanathan et al’?* encompassing
a thorough mixture of both IoT and non-IoT devices. From the generated
rules, a unique methodology for translating the ML algorithm’s output to
a compact and practical P4 program was proposed. As a result, the entire
classification algorithm is deployed entirely on the switch to enable line-rate
fingerprinting of IoT devices. The corresponding evaluation of this classi-
fication program on BMv2 demonstrates that the exact device type from
which the given traffic originates can be identified with 99% accuracy from
a single TCP packet. Moreover, a direct correlation between the number
of samples pertaining to a specific device in the dataset and the model’s
classification accuracy was observed, with the devices corresponding to less
training samples suffering from more misclassifications. On the contrary,
all devices with the maximum amount of samples (50,000 in this experi-
ment) were classified with 99% accuracy. It turn, this suggests that highly
accurate device-type classification can be achieved with a sufficient number
and balance of samples in the dataset for each device.

In summation, the proposed approach endeavors to advance the state-
of-the-art by making the following core contributions:

e Advancing the efficiency of network forensic investigations by lever-
aging programmable data planes in order to achieve the line-rate
fingerprinting of both DDoS attacks and IoT devices. The end re-
sult is a dramatic transformation of the traditional time-consuming
offline procedures of filtering a large amount of traffic captures into
that which can be conducted at line rate. Further, the filtering out
of attack traffic effectively circumvents the need to excessively store
a wealth of such irrelevant data.

e Improving upon current DDoS protection mechanisms by provid-
ing a unified network forensic approach for identifying the broad
spectrum of contemporary DDoS attacks within the switch. An
adaptive threshold-based approach is used to trigger both artifact
extraction and subsequent detection in order to mitigate attacks
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immediately following their inception. The evaluation of three
attack scenarios prevalent in the wild concurs that the proposed
strategy remediates UDP amplification and SYN flooding attacks
in fractions of a second, and reduces the complete mitigation time of
slow DDoS from to upwards of 10 seconds down to 2. Further, the
approach negates all other TCP flooding attacks that fictitiously
set flags.

e Presenting an IoT fingerprinting scheme that accurately identifies
the IoT devices from the traffic they transmit. When evaluated, the
approach was able to identify IoT traffic with 99% accuracy. More-
over, the fingerprinting scheme’s evaluation demonstrates that it is
not only effective for fingerprinting IoT devices from a single TCP
packet, but devices of non-IoT nature as well. In addition, the re-
sults suggest that this procedure can be applied for the fingerprint-
ing of the exact device type on the switch by merely incorporating
more training samples per device.

e Providing a novel automated methodology for converting ML rule-
based output to practical P4 applications on the switch. Further,
the proposed methodology has been specifically designed for com-
pact, parallel processing and thereby is extremely practical given
its small resource footprint; therefore, P4 programs utilizing it can
be employed by network operators next to a multitude of other
network-specific, P4 algorithms, and without the need for addi-
tional training.

The rest of the paper is organized as follows. In the next section, we
cover the related literature. Following these notable works, we discuss some
background information and our motivations in Section [3] In Section [ we
present the proposed approach and elaborate on the two use cases, namely,
DDoS and IoT fingerprinting. Subsequently, we evaluate the approach and
comment on the performance of each use case in Section Finally, in
Section [6] we revisit the contributions of this paper and offer some im-
provements for future work.

2. Related Literature

2.1. PJj-Enabled Analytics

In recent years, the benefits of programmable data planes have garnered the
attention of the research community. Though the ability to program these
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Fig. 1. Taxonomy of related literature.

forwarding devices is a relatively new technology and yet to be leveraged
for tasks specific to network forensics, a number of recent research efforts
have been presented to enhance network analysis procedures in the context
of IoT-based measurements, addressing disproportional network flows, and
enhancing machine learning implementations, as subsequently detailed and
depicted in the taxonomy in Fig.

Machine learning advancements. With the advantages of ML tech-
niques becoming apparent over past decades, current research efforts have
been studying how to synergize them with programmable data planes.
Given that training ML models is a time consuming process that can last
for weeks, traditional research avenues often endeavor to accelerate the
computation process. With programmable switches, such accelerations can
now be conducted throughout the network for distributed learning. To
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this end, Sapio et al2% offered a rudimentary MapReduce application for
performing data aggregation via P4 in an effort to reduce the communi-
cation overhead of exchanging model updates. In a similar context, the
in-network aggregation system proposed by Yang et al?8 was able to re-
duce the job completion time of a MapReduce-like framework by as much
as 50%. Applying a different technique to in-network aggregation, Sapio et
al2” used workers to perform gradiant vector computations, after which
point the workers send their individual update vector to the P4 switch and
receive back the aggregated model update. As a result, the authors were
able to speed up the model’s training by as much as 300% compared to
existing distributed learning approaches. Providing an alternative for re-
ducing processing overhead, Sanvito et al’“® worked on analyzing options
for partitioning subsets of layers of Neural Networks (NN) to offload to
programmable switches and Network Interface Cards (NIC) for processing.
Another area of P4 research is the harnessing the programmable
switches to perform classification tasks. This scope of study is currently still
largely theoretical, though noteworthy advancements have been made. For
example, Siracusano et al®® took a noteworthy first-step towards imple-
menting more complex NNs in P4 via presenting a simplified NN utilizing
only the bitwise logic functions that programmable switches can entertain.
Additionally, Xiong and Zilberman“? proposed some possible avenues for
programming various classification algorithms in P4, namely, decision trees,
k-means clustering, Support Vector Machines (SVM), and naive Bayes. The
authors’ attempted to strike a balance between the limited resources the
switch can use for such tasks and classification accuracy. Conversely to the
bitwise logic means of model simplification leveraged by 8 the algorithms
presented by Xiong and Zilberman?? were more complex, and the authors
stated that it is uncertain as to whether these algorithms will compile on
an actual hardware switch target. The proposed approach herein falls in
line with the goal of the two aforementioned works of switch-based clas-
sification; however, the proposed strategy for automating the integration
of rule-based classifiers entirely on the switch can be updated on-the-fly
as new intelligence arrives without any downtime, and neither sacrifices
accuracy nor the switch’s resources.
Disproportional network flows. The generalized approach to identify-
ing disproportional flows within a network is broadly referred to as Heavy
Hitter (HH) detection. Specifically, HHs are associated with a low number
of flows within a given network that consume a large amount of its band-
width. Their swift detection has long been shown to promote effective net-
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work management practices, and has been utilized in accounting
and traffic engineering/™¥ as well as worm and probing detection!
Following this aim, the works of Liu et al.3% Sivaraman et al.*” Xing et
al. 38 and Kuéera et al3? extended HH detection efforts to programmable
switches, which allows the traditional approach of employing software col-
lectors residing outside the data plane to be bypassed to enhance both
detection speed and accuracy. To this end, the aforementioned data plane
advances have all enriched the state-of-the-art in HH identification. Ulti-
mately, soft computing-like approaches such as HH detection, which tolerate
a level of uncertainty and partial truth™ due their generic nature, might
not provide suitable evidence to implicate wrong doing in court™ In turn,
the approach presented in this work reduces the scope of HHs to strictly
DDoS detection, with the primary motivation of prompt fingerprinting for
evidence extraction in order to facilitate network forensic investigations.
A number of other P4 research endeavors have also focused on DDoS
130 proposed a range of security poli-

cies for volumetric attack mitigation. In a different approach for addressing
1.41

detection. In particular, Zhang et a
volumetric varieties, Lapolli et al*~ utilized entropy for fingerprinting such
traffic anomalies. In addition, Mi et al'™ presented a deep learning tech-
nique premised upon the Pushback method®? for tackling volumetric DDoS.
To detect a particular type of volumetric DDoS, Febro et al#3 proposed
a means of fingerprinting that exploiting SIP. Alternatively, Scholz et al 4%
proposed a SYN flooding defense strategy premised upon SYN authentica-
tion and SYN cookie techniques.

While research efforts specifically tailored to DDoS fingerprinting are
viable candidates for forensic procedures, if a defense mechanism is to be
integrated into the network’s switches, it should address all relevant at-
tacks. This notion poses a problem for the aforementioned DDoS detection
schemes as one of the caveats of the programmable switch technology is
the limited resources of each switch; thus, implementing a number of dif-
ferent DDoS protection programs into the switch’s pipeline in conjunction
with fundamental programs pertaining to packet forwarding, load balanc-
ing, etc., is likely not feasible8% There is also a need to address the preva-
lence of more advanced DDoS techniques such as slow DDoS, which can
circumvent the detection methods proposed in the aforementioned research
efforts L' To this end, the work herein proposes a DDoS detection, artifact
extraction, and mitigation scheme that unifies a number of techniques to
function in harmony with one another in order to address an assortment of
relevant DDoS attacks. Additionally, the proposed approach introduces a
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novel means of providing useful forensic intelligence amid attacks employing
spoofing, by way of clustering configuration artifacts on the switch. This is
in contrast to previous approaches attempting to achieve this aim through
source authentication techniques such a SYN cookies, which can litter the
internet with the corresponding validation traffic and results in detection
latency.

IoT traffic management. The IoT paradigm has unmistakably been per-
vasive and entrenched in contemporary society in recent years. With such
an overwhelming utilization of these devices, the P4 research has focused on
promoting there integration into state-of-the-art networks. One particular
area of emphasis has been the significant percentage of network bandwidth
that is lost while transmitting IoT packet headers. Given that these de-
vices generally have limited processing capabilities, they typically transmit
packets encapsulating small payloads (e.g., a sensor readings), which leads
to large quantities of packets largely comprising redundant headers that
occupy throughput and need to be processed by the network. To this ex-
tent, Wang et al2%°7 and Lin et al®® proposed a promising solution of
aggregating such packets on programmable switches. This is in contrast
to conducting aggregation on server CPUs which can increase end-to-end
latency and result in the loss of real-time functionality.

Another area of IoT research undertaken by the P4 community is service
automation. Essentially, Low-power low-range IoT communication tech-
nologies characteristically utilize a Peer-to-Peer (P2P) model. While P2P
offers distinct advantages such as low end-to-end latency and reduced power
consumption, it’s also tightly coupled with the drawbacks of subpar scala-
bility, short reachability, and policy enforcement that is inherently inflexi-
ble. To overcome these pitfalls, Uddin et al®? proposed a programmable
switch that automates IoT services by encoding their transactions in the
data plane and utilizing the controller for address assignment, device and
service discovery, subscription management, and policy enforcement. Ad-
ditionally, the authors subsequently presented an extension®! that supports
multiple non-IP protocols. There is still a need to accurately fingerprint
IoT devices for purposes of the aforementioned approaches and for network
forensic procedures, and is thereby the motivation of IoT device fingerprint-
ing mechanism proposed herein.
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2.2. Traditional Network Forensics

Network forensics has safeguarded our networks for many years. More-
over, the research community has kept practictioners equiped with state-
of-the-art measures for conducting effective investigations in order to hold
adversaries accoutnable for their crimes. Amid some of the primary areas
of study in this context are ML integration, DDoS forensics, IoT analysis,
which are elaborated upon next and shown in the taxonomy in Fig.
ML integration. Capturing network activity lies at the root of network
forensics; however, a large amount of the information captured or recorded
will not be useful for investigations. Moreover, with the increasing rates
of traffic modern-day networks exhibit, this equates to a large amount of
wasted time, storage, and computational resources. In an effort to address
this, Mukkamala and Sung®" employed NNs and SVMs for offline intrusion
analysis in order to fingerprint key features that reveal information deemed
worthy for further intelligent analysis. With a similar goal, Sindhu and
Meshram®!' apply the Apriori algorithm to perform association rule learning
to the data their system collects in order to uncover patterns of malicious
activities.

Another area of concern for practitioners has been the increased prolifer-
ation of botnets which has been causing serious security risks and financial
damage. To aid the investigations of such misdemeanors, Koroniotis et al'32
employed association rule mining, an NN, naive Bayes, and a decision tree
to detect botnets and track their activities, with the decision tree giving
the best accuracy of 93.23%. In a subsequent work, Koroniotis et al!33
facilitated the training and validation network forensic systems by way of
offering a noteworthy botnet dataset. This dataset later enabled the work
of Oreski and Androéec®* which reduced the time needed for optimal fea-
ture selection by employing a genetic algorithm to optimize such parameters
to be fed into an NN. In another botnet forensic undertaking, Bijalwan>
explored the use of eight different ensembles of classifiers, showing the re-
sultant improvement in accuracy over a single classifier. Overall, the afore-
said ML approaches brought forth advancements reducing the amount of
time necessary to analyze large traffic captures for relevant artifacts. Con-
versely, the proposed approach conducts classifications as packets traverse
the switch, which allows events to be flagged and customized actions such
as the storing of evidence in the midst of an attack, in real time. Further,
the presented ML-based method is automated, and thereby circumvents the
need for additional expertise.
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DDoS forensics. With DDoS attacks not only being a concern for decades
but ever-increasing in intensity and frequency of occurrence, a number of
network forensic research endeavors has been devoted to targeting this
mounting issue. Following suit with the previously articulated benefits
of ML, it also been leveraged for DDoS forensic tasks. One such effort is
that conducted by Hoon et al#? which aimed to identify the best machine
learning model for offline DDoS forensics, finding that naive Bayes, gradi-
ent boosting, and distributed random forests were the most optimal. The
approach taken by Kachavimath et al®% affirmed the effectiveness naive
Bayes and additionallly showed that k-nearest neighbors too outperforms
conventional learning models. Similarly, Fadil et al*? utilized naive Bayes
to perform DDoS forensics on network traffic extracted from a core router
via packet captures. Conversely, the proposed approach herein performs
such detection as the traffic is traversing the switch. Yudhana et al®8 also
implemented a naive Bayes classifier, however they additionally integrated
a NN for conducting DDoS forensics.

Taking a more traditional approach to DDoS forensics, Zulkifli et al.42
exercised live forensic log file analysis to identify a Denial of Service (DoS)
attacks via Wireshark.®2 This live approach is in contrast to typical foren-
sic procedures, which are executed while the system is down®¥ Another
challenge for DDoS investigations has been the rise in both attack and be-
nign traffic that networks typically observe#2 Moreover, such a steep rise
has proportionally led to a sharp growth in attack log files sizes. In an
attempt to reduce the time to perform the corresponding analysis to at-
tribute sources and victims of DDoS attacks, Khattak et al®? proposed
using Hadoop’s MapReduce. Similarly, Khattak and Anwar®l leveraged
MapReduce to parallelize the entropy-based clustering and forensic analy-
sis of attack traffic to safeguard nodes in a cloud environment to decrease
log file analysis. In building upon this aim, the proposed approach presents
a technique for performing this traditionally offline procedure in a live fash-
ion via programmable switches, which allows evidence to be obtained at line
rate while the attack is simultaneously mitigated.

Additionally, Aydeger et al® also worked on mitigating DDoS attacks
such as Crossfire by utilizing SDN in conjunction with Network Function
Virtualization (NFV) to provide a Moving Target Defense (MTD) frame-
work for ISP networks to conceal network topologies. The authors also
permitted the storing of information pertaining to potential attackers for
investigations. Alternatively, the methodology introduced herein pushes
relevant attack evidence to a collector for subsequent analysis immediately
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upon detection to eliminate benign traffic data excessively consuming stor-
age. P4-programmed switches process packets in nanoseconds, and allow
practitioners to easily add customized code for evidence extraction once
such maliciousness has been fingerprinted. Other network-specific DDoS
forensic works include machine-to-machine networks presented by Wang et
al.,®¥ mobile ad hoc networks by Timcenko and Stojanovic** and networks
encompassing cellular devices by Cusack et al®® Further, with slow DDoS
via mobile devices being a growing concern®4 Cusack et al®® endeavored
to idenitfy the presence of such attacks based upon the Euclidean distance
similarity between the protocol (e.g., HTTP, HTTPS, etc.) counts of a past
and present log file. Since this technique can lead to both false positives and
negatives given the randomness of traffic patterns, the proposed approach
employs a novel interarrival time analysis scheme that facilitates investiga-
tions by fingerprinting, attributing, and mitigating slow DDoS attacks in
real time.

IoT fingerprinting. With the IoT paradigm being tied to a number
of inherent vulnerabilities and responsible for a large number of botnet-
facilitated DDoS attacks, investigating crimes conducted by way of these
devices is now fundamental to network forensics. In turn, fingerprinting
traffic originating from them has recently attracted significant attention
from both the research community and the industry in order to identify
events of interest and extract relevant artifacts. With ML’s ability to rec-
ognize patterns in network traffic, it is generally leveraged for IoT finger-
printing tasks. Among these, Meidan et al.®!
trained upon deep packet features in order to distinguish between IoT and

used supervised learning

non-IoT devices, and to associate each IoT device to a specific class. Yang
et al'%? utilized both deep packet and header features to train a NN in order
to generate IoT fingerprints. Alternatively, Sivanathan et al'®3 leveraged
SDN-based, flow-level telemetry combined with machine learning for IoT
classification. In another approach based upon SDN, Thangavelu et all%%
assigned classifier maintenance to the controller and the actual tasks of clas-
sifying IoT devices to the gateways. The gateway devices utilize software for
classification (i.e., unscalable to high traffic rates®¥), which differs from the
hardware based classification approach proposed herein which ensures line-
rate processing amid heavy traffic loads. Further, the proposed approach
classifies devices from the headers of a single TCP packet which necessitates
nanoseconds in hardware versus the session or flow-level analysis utilized
in%4 and 63 respectively, which gives a classification time upper-bounded by
the time to analyze the encompassed successive packets. Taking a different
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approach, Feng et al/® used IoT application-layer response data coupled
with product descriptions from relevant websites to generate an Acquisi-
tional Rule-based Engine (ARE) to classify devices. Conversely, Perdisci
et al’% only uses DNS fingerprints IoT device classification. Lastly, Pin-
heiro et al /%7 five different classifiers trained with packet length statistics to
identify IoT devices, from which the Random Forest algorithm achieved the
highest accuracy of 96%. While all the aforesaid works advanced the state-
of-the-art in IoT device fingerprinting for network forensic intelligence, all
but® and® performed offline procedures which leads to delays in detec-
tion and attribution of criminal behavior, which is in stark contrast to the
P4 switch-based approach which can fingerprint devices and execute corre-
sponding customized actions as a single packet originating from the device
traverses the switch’s pipeline.

3. Background

3.1. A Primer on Programmable Switches

As previously mentioned, SDN provided an effective means of separating
the control plane from the forwarding devices of the data plane. The data
plane table entries are then populated by way of protocols such as Open-
Flow 2% and the control plane exposes interfaces for third-party applications
where programmers can apply customized logic for the population of ta-
ble entries. Despite the data plane customization that this allows for, the
latest OpenFlow specification (OpenFlow 1.5.18%) is constrained to 45 head-
ers, which dramatically limits the range of applications that can be used.
Further, attempts to modify or add headers generally translates to about
4 years of waiting1?

Alternatively, recent efforts have been devoted to developing switches
that allow for full data plane ASIC programmability via domain-specific
languages such as P457 Along with allowing for customized network im-
plementations, programmable switches do not incur performance penalties
and run on ASICs at line rate with terabit speeds. For example, the Tofino2
ASIC processes packets at 12.8 Tbhps 58

At the root of this advance’s inception is the Protocol Independent
Switch Architecture (PISA), which is depicted in Fig. As shown, an
incoming packet enters the programmable parser where it is parsed into
individual headers (parsed representation), and where states and transitions
are defined. Subsequently, the packet flows sequentially into each stage of
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the Programmable Match-Action Pipeline where match-action unit tables
are applied. It is these tables where various header and metadata fields are
typically matched on in order to provide customized behavior. Additionally,
programmable data planes possess the distinct ability to perform stateful
packet processing by way of storing data across packet traversals of the
switch via counters and registers. As a result, network owners can leverage
these storage mechanisms to implement their own complex processing logic
that operates at line rate. Once the P4 program is written, it is transformed
into binaries for the target architecture by the compiler provided by the
particular target switch’s vendor. In addition, the compilation produces
interactive APIs that the control plane uses to interact with the data plane.

Programmable Match-Action Pipeline

L | (m> N> .| o |

NN i

S5 > R R ||
& > EE > o

-Match Logic .Action Logic

Fig. 2. Programmable switch architecture

3.2. Motivating Line-Rate Network Forensics

Typically, network forensics entails the storing of all observed traffic on the
network via packet captures, saving sampled traffic information, or logging
network events of interest. In all cases, investigations generally necessi-
tate the later inspection of this information. Naturally, the capturing of
each and every packet traversing the network has an increased potential of
encapsulating forensic artifacts when present; however, this is achieved at
the clear cost of storage and the time complexities associated with process-
ing the captures. An alternative approach is conducting such analysis in
an online fashion. To employ an online analytics strategy, the assistance
of software-based middlebox techniques (e.g., Intrusion Detection Systems
(IDS), firewalls, etc.) are generally warranted. These approaches are de-
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ployed in-line, meaning that network traffic will be processed by them prior
to it reaching its destination.

While middleboxes are supported by well-crafted methods and algo-
rithms for inspecting and filtering malicious traffic, software-based solutions
suffer from serious concerns in terms of performance, cost, and agility.%
For example, DDoS attacks are now synonymous with leveraging terabits
of attack traffic, which is a rate that is impossible to handle with current

software solutions 16

The end result is a significant degradation in the
network’s throughput, which in turn affects resource utilization. Moreover,
packets inspected by software lead to a considerable increase in latency and
jitter, which impacts the Quality of Service (QoS) of latency-sensitive ser-
vices and user experience. Furthermore, this phenomena not only applies
to DDoS attacks, as the increasing utilization of the Internet has resulted
in a variety of networks experiencing exorbitant traffic loads5?

In addition to network performance, software-based approaches necessi-
tate additional costs to keep up with such traffic rates. While incrementing
the number of hardware resources employed will solve the problem, ulti-
mately a steep rise in operational costs and management complexity will
arise. Note that adding resources is a temporary patch given the aforemen-
tioned trend of growing traffic rates.

Lastly, proprietary middleboxes are closed source; thus, practitioners
cannot readily modify algorithms or develop custom solutions that imple-
ment the latest forensic intelligence. The nature of cybercrime is dynamic,
and adversaries are constantly utilizing new attack vectors and surfaces. At-
tempting to mitigate such maliciousness with middlebox-based techniques
is a daunting task given the challenge of keeping them current without ven-
dor support. Conversely, programmable data planes address each of the
aforementioned shortcomings. They are not only cheap to deploy but allow
practitioners to customize the processing logic, that once compiled, func-
tions at line rate amid substantial traffic loads. Therefore, these forwarding
devices offer the cost-effectiveness, agility, and necessary performance to
meet the demands of contemporary network forensic tasks.

4. In-Network Forensic Use Cases

To effectively demonstrate the abilities of programmable switches to assist
in the network forensic process, two use cases are detailed in this section
in order to provide an in-network means of fingerprinting an assortment of
DDoS attacks and IoT devices. The particulars of each use case are high-
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lighted, along with how the intricacies of each approach are implemented
on the switch.

4.1. Assessing DDoS

The first of the two approaches entails aggregating a number of unique
DDoS detection strategies into one uniform network forensic methodology.
To perform such aggregation, note that while a variety of DDoS attacks are
currently exercised by adversaries, they can essentially be encapsulated by
the binary classification of volumetric or stealthy (i.e., slow DDoS); thus,
this proposed technique utilizes two schemes for detecting the assortment
of relevant DDoS attacks, which are elaborated upon next.

4.1.1. Slow DDoS

What has been termed slow DDoS takes a stealthy approach to denying
service to a targeted network via endeavoring to tie up the server’s available
connections in order to deny authentic clients access. These attacks utilize
legitimate TCP behavior and send malicious packets at a frequency similar
in intensity to that of benign traffic, which makes such malicious traffic
incredibly hard to detect by way of traditional anomaly and signature-
based techniques 16220

To effectively fingerprint these stealthy attacks, the stateful processing
of programmable switches is leveraged in order to track the active sessions
on the server being targeted by the attacker. In particular, a record of
each authentic session an outside entity retains with the target server is
stored within the switch’s registers. The utilization of the switch’s reg-
isters (versus pushing data to the controller for storage) enables line-rate
functionality as this is performed entirely on the switch hardware. Note
that by maintaining such records, all assortments of TCP flooding attacks
are effectively eradicated because they are not associated with any current
valid connection with the server, as implied in Fig. ] This is due to the
fact that TCP flooding variations set a variety of erroneous flags without
first establishing a connection (aside from SYN flooding which is addressed
by the approach with a different technique), which is designed to exhaust
the target server’s resources, or some semblance of both.

In order to generate statistics with respect to each active session held
with the server for real-time detection purposes, the switch first associates
all such sessions with their corresponding source IP addresses. Note that
source IPs are relevant artifacts for slow DDoS as it does not leverage
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Fig. 3. DDoS detection approach overview.

spoofing because a legitimate interchange of packets between the source
and destination IP addresses is fundamental to executing the attack. That
being said, storing all the IP addresses that could potentially be observed
naturally induces resource consumption issues. To address this issue, a
65,536 cell Bloom filter is held on the switch, which is instantiated as a reg-
ister array. Bloom filters offer the distinct advantages of storage efficiency
and O(1) access times. In this implementation, the index of the register to
be accessed in the Bloom filter is determined from the result of a Cyclic
Redundancy Check 16-bit (CRC16) hash of the source IP address. The
overview of the Bloom filter’s behavior is shown in Fig. [4 In this instance,
the registers of the Bloom filter are responsible for holding the timestamp of
the last packet received from the given index. This proposed fingerprinting
strategy leverages timestamps as the foundation of its detection mecha-
nism given interarrival times are a distinguishing factor of a slow DDoS
occurrence. Specifically, slow DDoS keeps interarrival times long enough
as to conserve the attacker’s resources and not stand out amid the flow of
legitimate traffic, but not too long as to be timed-out by the target server.
This behavior can be observed in the source code of implementations of this
attack, such as in that of R U Dead Yet? (R.U.D.Y.}*! and Slowloris 22
When a packet arrives at the switch and is found to be holding an
active session with the server, the interarrival time (timestamp, . ... —
timestamp,, ;o) Of this session is extracted. Once this occurs, this value
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Fig. 4. In-network stateful artifact tracking by way of a Bloom filter.

is subsequently matched against ranges of interarrival times in one of the
switch’s match-action tables. Each of these table entries of interarrival time
ranges are associated with direct P4 counters, meaning a corresponding
counter is incremented for each match. At the end of each designated time
window W, these counters are received by the controller as a counter array
and subsequently analyzed. By way of a Python script, the controller uses
these counts to formulate a distribution of the interarrival rates observed
on the network during W. Note that proceeding in this fashion accounts for
traffic patterns that are varying during busy or slow times. It is from this
distribution that the detection strategy fingerprints anomalies associated
with slow DDoS, i.e., abnormally-lengthy interarrival times. Further, given
that this distribution of current network traffic is updated in real time, the
switch can use its line-rate processing abilities to immediately identify such
stealthy attacks.

Note that while merely employing a dynamic anomaly threshold ad-
dresses the pinpointing of slow DDoS amid varying legitimate traffic rates
the network may observe, there is a chance that benign users with very
slow connections could falsely be identified as malicious. In order to mini-
mize any such impacts these users, it is paramount to impose the anomaly
threshold on an as-needed basis, namely, only when the total number of
connections the server has to offer are nearly all consumed. In addition,
because an interarrival time calculation inherently necessitates the analysis
of two subsequent packets from the same source IP, this poses a challenge
if the detection mechanism waits until the all of the server’s available con-
nections are consumed before it acts, i.e., resulting in 10 seconds of DDoS
for the network from an attack employing 10 second interarrival times.
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As a result, it is necessary to act preemptively. To this effect, the pro-
posed approach aims to identify the number of session establishments that
can be expected to occur during W;. The switch then strives to preemp-
tively keep such expected number of such session establishments F open at
all times during W;y;. We argue that this minimizes the aforementioned
false positives considering that slow DDoS interarrival times are generally
much higher than that of benign users with sluggish connections. This is
because if an attacker instrumented enough source IPs to consume all of
the target server’s available connections, using relatively-normal interrival
times, the attack as a whole would lose its stealthiness as it would ap-
pear rather volumetric in nature. To incorporate this preemptive measure,
the switch maintains a register holding the maximum number of session
establishments which occur during time window W without any of the
currently-established sessions closing. Upon the expiring of W, the con-
troller computes the 10 second moving average of this register, esty,. In
turn, the proposed approach can effectively identify a threshold for drop-
ping slow DDoS connections when less than est,, threads exists during W,

as given by:
o t(l'l)
[t = e 1)
t

hresh max(sessions)

4.1.2. Volumetric Analysis

Middlebox or server-based software volumetric DDoS defenses often result
in degradation to a network’s throughput. This is because they simply
cannot keep pace with processing the large amounts of traffic that these
attacks are now generating. Conversely, the proposed volumetric detection
scheme utilizes the switch’s stateful storage in order to circumvent the need
of such CPU-based implementations. In particular, the bandwidth artifacts
utilized by TCP, UDP, and ICMP are stored within the switch’s registers
in Bps. This is relevant considering the direct proportionality between the
bandwidth being consumed and the resource depletion of targeted server.
In turn, by determining the bandwidth consumed at regular time windows
W while the network is not experiencing an attack, volumetric DDoS will
produce an anomaly (i.e., a deviation from the network’s normal link sat-
uration) if it transpires. These overarching bounds (Tuiiocated;) are deter-
mined by assesses the expected throughput for each of the aforementioned
protocols via the following equation:

)

Tmeaeuredv
Tallocatedi = Btotal * s (2)
ZSG(S) CZ-‘WLeasuredS
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where Biotq; is the total amount of bandwidth allowed, Tgyjocateqd 1S the
throughput allocated per transport protocol, Ty eqsured is the current be-
nign throughput measured by the switch during time window W, and i € S
where S = {TCP, UDP, ICMP}. By bounding the protocols by Tajiocated;
the remaining protocols S — ¢ will function unimpeded if protocol ¢ is being
used to deliver a volumetric attack. Aside from the majority of TCP flood-
ing which was previously addressed, namely, that sending fictitiously-set
flags, not that this mechanism can impact service to any benign entities
also using 4. In turn, further action must be taken to minimize such collat-
eral damage.

For ICMP traffic, reducing impact to its legitimate use is first promoted
by not electing to adopt the approach taken by many modern-day networks
of simply blocking all ICMP traffic at the edge for security purposes. The
motivation for doing so is that it is often essential to circumvent issues with
diagnostics and performance.®® Secondly, such traffic is dropped when the
header field Type equals 0, 3, 4, 5, 8, and several others that have been
deprecated ¥ As a result, various sub-classes of ICMP-related attacks and
vulnerabilities are eradicated.?® The Bps of the remaining ICMP traffic is
then recorded by the switch and bounded by Thiiocated;cnsp -

Minimizing the impact benign entities using UDP is especially rele-
vant. UDP encompasses a large assortment of underlying services and at-
tempting to only bound the throughput of all UDP traffic by Tuiiocatedy
allows an attack using a single UDP-based service to DDoS all other UDP-
encapsulated services. It is also important to note that UDP notoriously
coincides with amplification attacks because some UDP-based services’ re-
sponse is much larger than the initial request. In turn, adversaries can
easily send requests resulting in response traffic that reaches magnitudes
far exceeding that which they needed to transmit. In turn, this type of
attack can either consume the network’s server or bombard another target
with responses from the network’s server via the adversaries spoofing the
source IP of the initial requests (reflection attacks®"). In fact, amplification
resulted in the largest Thps DDoS attacks to date 2% To address both am-
plification and impact to benign entities, the proposed strategy conducts
real-time distribution calculations via recording the Bps per application
layer amplification protocol (identified on the switch via the destination
port) over a moving average of time window W. For the sake of simplicity,
the remaining application layer protocols that are associated with ampli-
fication are grouped into one distribution calculation. In the event more
fine-grained consideration for such remaining protocols is needed, this tech-
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nique can easily be amended with no added latency and very little addi-
tional consumption of the switches resources, namely, one extra register,
counter, and port match entry per added service. Similarly to the strategy
elaborated upon in Section [£.1.1] the Bps counts are extracted by the con-
troller upon the completion of W. The controller then calculates the new
threshold for each of these services and pushes them back to the switch.
The switch subsequently stores these values in its registers and enforces
them at line rate. Note by analyzing both the source and destination ports
of incoming UDP traffic, the proposed strategy vanquishes attempts by at-
tackers to both target or leverage (for a reflection attack) the network’s
server.

In terms of volumetric TCP attacks, as shown in Fig. SYN flood-
ing remains to be addressed. Given that SYN flooding generally entails
spoofing of a large amount of SYN requests in order to saturate the target
with empty transactions, it becomes difficult to segregate malicious request
traffic from that of a benign nature. A common technique employed in the
past is to merely block all SYN traffic amid such an attack, i.e., effectively
denying service to all new end users as a means of mitigation. Alternative
approaches have since been proposed, such as SYN cookie techniques, how-
ever they incur latency and often litter neighboring networks with response
traffic?? To address these gaps in the literature, the proposed approach
implements a signature matching scheme via hashing the headers of ingress
SYN packets that have the tendency to imply different TCP /TP implemen-
tations, such as TTL, Window_Size, etc. This strategy is motivated by
the fact that an adversary will generally target specific vulnerabilities (e.g.,

100I0L)+ therefore, there ex-

from a certain Operating System (OS) version
ists a strong likelihood that the machines exploited by this adversary to
transmit the attack will possess the same signature.

The signature artifacts are maintained on the switch by of a counting
Bloom filter. This Bloom filter functions similarly to that previously dis-
cussed in Section [f.I.1] however it is the configuration headers that are
hashed to obtain the index of the register array, and the value stored in
the given register is merely count of how many times that register has
been hashed to. The highest counts within this array are stored in addi-
tional registers on the switch to be be compared against. The reason for
storing multiple counts is in this event the passive signature matching pro-
cedure does not fully identify all the malicious sources; thus, blacklisting
only the sources with the highest count might not be sufficient to mitigate
the attack. In turn, the sources with the highest counts are incrementally
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blacklisting until the SYN request rate falls below a desirable threshold in a
given W. As a result, there is less likelihood that legitimate end users will
inadvertently be blacklisted by the SYN flood’s mitigation strategy. To
calculate the aforesaid threshold dynamically, the switch first counts the
SYN packets it observes during W. Upon the expiring of W, the switch’s
data is transmitted to the controller. At this point, the controller calculates
the 10 second moving average of SYN requests and returns the resultant
value (plus two standard deviations) to the switch to be used as a dynamic
threshold.

4.2. Fingerprinting IoT Devices

With the plethora of vulnerabilities surrounding IoT couple with the in-
creasing utilization of these devices, the value in extracting IoT-specific
artifacts for investigations is evident. To date, the most effective means of
fingerprinting IoT devices is by way of ML. To this end, the state-of-the-art
research in P4 has been endeavoring to uncover a practical means of inte-
grating ML functionality into the switch’s pipeline 22272968 The primary
reasons for doing so are either (1) to leverage the boost in speed that the
switch’s hardware can offer (e.g., for distributed learning applications) or
(2) to harness the classification abilities of ML within a network context.
Though a few noteworthy works have been proposed addressing some nu-
ances pertaining to (1), a viable and practical solution is still ultimately
lacking in terms of (2).

One concern with (2) is whether switches can execute quantized ver-
sions of complex classification algorithms with acceptable loss to accuracy.
Another debate that has arisen with (2) is such algorithms can consume
a large amount of the switches limited resources and therefore, if it is re-
alistic from an economic standpoint to have a switch strictly dedicated to
classification tasks. We address these issues with (2) in this use case via
identifying an ML algorithm that accurately fingerprints IoT devices with-
out the need for any quantization and map it to the switch’s pipeline in a
highly efficient manner, as subsequently detailed.

4.2.1. Switch-Based Constraints

One of the trade-offs with leveraging the efficiency of a programmable
switch is operating within its strict resource constraints. One means of
meeting these tight resource bounds is by offloading tasks to the controller.
That being said, such approaches can be susceptible to additional latency
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due to communication and calculation delays. Whether or not this la-
tency is acceptable is generally based on the application. Additionally, if a
strict data plane application is preferred, only specific computations (e.g.,
simple comparisons, bitwise operations, addition, and subtraction) and a
small predefined number of algorithmic operations (limited by the number
of stages utilized) can be performed =

While the set of computations that can be practiced within the switch
is clear, a notion that cannot be understated is that of stages. Though
internal switch configurations are vendor-specific and generally not dis-
closed to the public, it is common to employ a little over ten stages in pro-
grammable switches1%2 A stage is allocated its own dedicated resources,
such as match-action tables and register arrays. Operations within a stage
function independent of each other (i.e. in parallel). Though stages can
pass information to subsequent stages via modifications made to a given
packet’s header fields and metadata, the operations encapsulated from one
stage to another execute sequentially at runtime. As a result, the amount
of sequential operations that a programmable switch can entertain are
bounded by the number of stages the hardware switch possesses. While the
choice of operation placement typically made by the compiler, it is based
on whether the aforementioned operations possess dependencies (i.e., they
need to be executed sequentially). For example, if meta_variable; = valuey
and meta_variables = meta_variabley + 1, these operations will necessitate
2 separate stages. Moreover, if intermittent stages are being filled by other
P4 programs, a dependency-ridden implementation might not compile on
an actual hardware switch.

In order to offer line-rate IoT artifact extraction to network forensic
practitioners, the proposed IoT fingerprinting ML mechanism is converted
to a resource-friendly implementation that operates entirely within the data
plane. As a result, its processing is performed at a relatively constant rate
as traffic traverses the switch (i.e., within nanoseconds). In particular, the
Projective Adaptive Resonance Theory (PART) learning algorithm!!3
harnessed for the fingerprinting procedure. PART is a partial decision tree
algorithm for rule-based classification; each rule corresponds to one traver-
sal down the tree to a given class. Contrary to the comparable C4.5%
and RIPPER! algorithms, it can generate the appropriate rules without
the need to perform global optimization and hence is a more efficient al-
ternative. Further, the proposed approach’s mapping of classifier output
to P4 applications can be expeditiously applied to any such rule-based ap-
proach while being extremely conservative with the aforementioned limited

is
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resources of the switch, as subsequently elaborated upon.

4.2.2. Meeting Hardware Restrictions

With the proposed fingerprinting approach residing strictly within the data
plane, it is paramount that it meets the aforementioned tight bounds of such
implementations. To address this aim, we convert the rules generated by
PART to match-action tables in the switch’s pipeline. Essentially, each
of these rules encompasses a group of comparison statements, with the
number of statements within each rule ¢ falling within the set S; = {z |
x € NAz <= [f|}, where |f| denotes the number of features used for the
classification. It can be observed in Fig. [5| how each of these rules arrives
at a particular class.

Rules T tcp.flags . Devices
tcp.dport <= 139 AND ! tcp.win Dropcam
tep.win <= 4436 AND tcp.dport

tep.flags <= 2: AmazonEcho AmazonEcho
(1552.0) .
\ HPPrinter
tcp.dport > 139 AND tcp.dport > | ¢
445 AND ip.off <= 0 AND ip.ttl <=| Iphone
64 AND tcp.win > 3012: i .
HPPrinter (343.0) k L] /.

Fig. 5. Match-action tables corresponding to each feature

4.2.3. P4-Specific Features

With resource conservation in mind, recall that the programmable parser
extracts header values prior to the match-action pipeline. This translates to
packet header data being stored in variables (i.e., so they can be processed
by the switch in its pipeline) without using any of the valuable switch stages
for assignment operations. To leverage this notion, the PART algorithm
is trained specifically only upon headers in order to determine which are
best utilized for IoT device fingerprinting. The headers instrumented as
features are denoted in Table [Il As shown, there are ten features in total
(i.e., |f] = 10).
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Feature List

ip.len ip.id ip.off
ip.ttl ip.sum tep.sport
tep.dport tep._off
tep.win tep.flags

Table 1. IP and TCP header-based features used for fingerprinting

4.2.4. Parallel Processing

Building upon the strict employment of header-based features for classifi-
cation, it should be noted that the variables that the programmable parser
stores the header values in are entirely independent of one another. In turn,
all features can be evaluated in parallel because there are no dependencies
between them, as previously explained in Section[£:2.1] Further, evaluating
whether each of these features match an explicit range or value requires no
other operations other than hard coding the values to be matched against
as keys in the switch’s match-action pipeline. As a result, proper imple-
mentation of the PART feature evaluation component of the P4 program
facilitates parallel processing, and in turn, uses a minimal number of con-
sumed stages.

4.2.5. Match Table Mapping

To facilitate the generation of a program that can be updated by network
operators upon the arrival of any new fingerprinting intelligence, whether
during initialization or runtime, the program must be constructed in such
a manner where this needed flexibility exists strictly within the entries of
the match-action tables. This is because while the entries in the match-
action tables can be added or removed effortlessly at any point during the
program’s execution, the allocation of the tables took place during the
program’s compilation and are therefore static. To this end, the proposed
fingerprinting approach employs a shell made entirely up of tables, i.e., the
actual P4 code that is visible to the forensic practitioner and will not be
modified. This shell is only dependent upon the features utilized (i.e., the
header values trained on). The shell encompasses one table per feature,
followed by a single fingerprinting hash table to perform the classification.
Each of these tables are instantiated via a simple apply statement, as shown
by Alg. 1.

In turn, the number of tables implemented is always equal to |f| + 1.
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Algorithm 1 P4 implemenation algorithm.

Control Ingress {
apply (ip_len_tbl);
apply (ip-id_tbl);
apply (ip-off_tbl);
apply (ip-ttl_tbl);
apply (ip-sum_tbl);
apply (tcp-sport_tbl);
apply (tcp-dport_tbl);
apply (tcp-off_tbl);
apply (tcp-flags_tbl);
apply (tcp-win_tbl);

apply (hash_fingerprinting_tbl);

Further, because the feature analysis can be conducted in parallel, the IoT
fingerprinting approach only necessitates two stages in the programmable
switch pipeline, namely, the feature tables followed by the device classifi-
cation. Each of the feature tables has a declared action() (i.e., performs
processing based on the key that was matched) that merely assigns a result
to a single metadata variable which holds that table’s match result (i.e.,
the result of that feature’s evaluation). Each result falls within the set
Tresut ={j | j € NAj <= |K|}, where K is the ranges a particular feature
must be evaluated against. Effectively, each feature matching result can be
thought of as one feature check in the rules (such as that depicted in Fig. [5))
that, when grouped together for all features, correspond to a classification.
Thus, once the features to be evaluated for a given classification task have
been decided upon, it is only the match ranges (i.e., the tables keys) that
can vary after retraining the PART algorithm for this implementation. In
turn, the proposed fingerprinting approach for translating rule-based clas-
sification schemes to P4 programs can be generalized to any rule-based
classification task, given any additional functionality incorporated by prac-
titioners falls within the switch’s resource constraints.

4.2.6. Device Fingerprinting

Once the feature tables are applied, the remaining stage consists of fin-
gerprinting the device based upon the aforementioned results of the feature
tables. With these results being held in 10 respective feature metadata vari-
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ables, device fingerprinting is achieved by performing a single hash of the
aggregation of the returned feature table results. In turn, the output of the
hash acts a unique device identification (ID), which acts as its fingerprint
for forensic investigations. Further, the textual representation of the spe-
cific device can be obtained by matching the device ID against the unique
hashes held by the controller, which can be immediately computed after
the PART algorithm has generated the rules from its training. Moreover,
specific behaviors can be defined on the switch to take the appropriate mea-
sures when the hash of a given type of device’s packets traverse the switch.
This entire process of fingerprinting the IoT device necessitates exactly one
traversal of a SYN packet, which the switch can compute in nanoseconds.

4.2.7. Automating Program Configuration

Mapping the rule-based ML classifier output into the switch’s match-action
tables can be achieved by way of the controller upon switch initialization,
or at any time during execution. The method for automating this strategy
is depicted in Fig. [6] The underlying motivation for proceeding in an
automated fashion is twofold: (1) the ML mechanism can be leveraged by
practitioners regardless of background expertise and (2) the implementation
allows for the freedom of updating the model while the approach is running
or offline. As shown in Fig. [f] the rule-based classifier feeds its trained
rules to the control program. These rules are then processed by a Python
script residing on the controller. The script’s pseudocode is articulated
in Alg. By way of the compiler-generated API for interacting with
the switch, the controller first removes the existing entries in the switches
tables. Subsequently, the controller repopulates the tables with the updated
entries by adding the output from Alg. 2] The match-action tables in the
switch pipeline shown in Fig. [6] perform ternary matching in order to
determine if a given number falls within a specific range. As shown in Alg.
] the lower k and upper k + 1 bounds corresponding to each feature j for
a given rule are stored in Ty,q¢riz[j, k]. These bounds are sorted to act as
a division of the ranges held by K.

5. Evaluation

To assess the effectiveness of both the DDoS detection and IoT fingerprint-
ing network forensic use cases, an evaluation of both was conducted and
detailed in this section. With the proposed DDoS network forensic de-
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Algorithm 2 Converting classifier output to P4 table entries.

Result: P4Runtime table population commands
I« rule_list _
Tmatriz — [|l| * 27 |fH
7+0
while f in f do
k+0
while rule in [ do
n < count(devices)
if f then
Tratriz [.]a k] — boundoyer
Tratrizd, k + 1] < boundpper

k< k+2
end

end

end
while row r in T,q4rie do
‘ SOTt(Tmatrir[ra])
end
while column ¢, row r in Thatriz do
| write ternary range Tpatriz|T, c] to feature table f[c]
end

tection and mitigation use case tackling the broad spectrum of currently
relevant attacks, three of such scenarios were employed that generalize well
to contemporary DDoS attack vectors, namely, SYN flooding, UDP am-
plification, and Slow DDoS. Alternatively, the IoT fingerprinting use case
necessitated a single scenario to measure its ability to fingerprint such de-
vices entirely within the switch amid a stream of traffic passing through
it.

5.1. Environmental Setup

The experimental topology shown in Fig. was employed to evaluate
the DDoS detection and mitigation use case and was implemented on
Mininet?% in conjunction with the BMv2 software switch. The underly-
ing OS utilized was Ubuntu 16.04.6 LTS, with 16GB of memory and eight
Intel Xeon Gold 6130 CPUs running at 2.10GHz. Fig. [7] also denotes the
six clients which were connected to the P4-programmed software switch by
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Fig. 6. Automation of IoT device fingerprinting.

way of Linux network namespaces. These client machines were responsible
for generating traffic towards the target server. The artifacts serving as the
experimental results were extracted by the switch via P4 and polled by the
controller for analysis.

5.2. DDoS Detection Results

UDP amplification. For this scenario, traffic utilizing two common pro-
tocols leveraged by adversaries, DNS and NTP, were transmitted to Client 4
which was configured to emulate a resolver to perform the reflection against
the target server. The requests it served were spoofed to the server’s IP, and
it responded with an amplification factor consistent with.’%7 The maximum
allowable UDP bandwidth was set to 300 Mbps, and the hping3 Linux tool
was used to produce the traffic from the respective client machines. As
depicted in Fig. [7], Client 1 and Client 2 transmitted benign DNS and NTP
traffic, respectively, at approximately 714 datagrams/sec to the server to
establish the baseline rates measured by the switch. To alternatively repre-
sent a network environment entertaining a variety of UDP protocols that do
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Fig. 7. The topology of the DDoS network forensics evaluation environment

not promote amplification, Client 3 produced such legitimate traffic toward
the server at a rate of 2,856 datagrams/sec. After an arbitrary 10 seconds
that passed for baseline establishment, Client 5 began flooding Client 4
with spoofed DNS traffic as shown at second 1 in Table 2] Note that by
second 2 of Table 2] while the available DNS throughput had been fully
consumed, neither NTP nor any of the other UDP protocols were affected
by the attack. Moreover, these unaffected protocols could increase through-
put unimpeded amid the DNS amplification attack. In a similar fashion,
Client 6 launched a concurrent amplification attack at second 3 of the use
case utilizing NTP. As shown in Table [2] the remaining UDP protocols
traversed the network unimpeded. In fact, they encountered no latency or
packet drops while the network was under the aforementioned two ampli-
fication attacks simultaneously, and were able to effectively double their
transmission rates collectively to 5712 datagrams/sec towards the server
unaffected, which was the maximum amount of bandwidth allotted during
the baseline establishment.

SYN Flooding. For the SYN flooding scenario, a SYN queue size of
1024 was assumed and hping3 was again leveraged for traffic generation.
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Protocols ‘ # Packets per Second Avg Bounds
NTP Avail. 553 562 557 0 0 1259

NTP Utilized 698 688 694 | 1251 | 1254
DNS Avail. 557 0 0 0 0 1254

DNS Utilized 693 | 1257 | 1254 | 1254 | 1254

Misc. Avail. 2068 | 2053 | 2067 | 2094 | 2029

Misc. Utilized | 2582 | 2547 | 2582 | 2555 | 2554 4626

1s 28 3s 48 5s

Table 2. UDP Amplification attack mitigation results

Amid the arbitrary baseline establishment period of 10 seconds, Clients
1 through 5 each made 600 SYN requests per second to the server with
subsequent ACKs. At second 0 of Fig. Client 6 began transmitting
malicious SYN requests peaking at approximately 2000 packets/sec. With
the six client machines in Fig. [7] utilizing the same OS environment, their
configurations were modified to mimic the diversity in real-world settings
in order to effectively evaluate the proposed approach’s signature attri-
bution mechanism. A binary classification of the transmitted traffic was
conducted by the switch to perform the evaluation, with the negative class
encompassing malicious traffic and the positive class pertaining to that with
legitimate intent. In turn, the metrics of true positives (TP), false nega-
tives (FN), true negatives (TN), and false positives (FP) were leveraged
to obtain the specificity = TN/(TN+FP), precision = TP/(TP+FP), and
accuracy = (TP+TN)/(TPp+TN+FP+FN) of the results, as shown in Fig.
The dip in performance peaked at approximately the 0.25 second mark.
Note that this 0.25 second window needed to observe the signature devia-
tion is proportional to the traffic rate deviation from the dynamic threshold.
That being said, a flawless performance was given by all metrics by 0.5 sec-
onds. Additionally, no latency was observed in the services of legitimate
SYN requests throughout the attack, and the SYN queue never exceeded
its conservative size of 1024 set forth for evaluation purposes. In fact, the
occupancy of the SYN queue only increased by roughly 13% due to the at-
tack traffic. Additionally, it should be noted that this experiment’s artifacts
extracted by the switch at line rate were polled by the controller at arbi-
trary 0.25 second intervals for convenience, and thus the aforementioned
0.5 second interval in this case is an upper bound of a complete mitigation.
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Slow DDoS. To better put the scheme’s full capabilities to the test, the
maximum number of clients that the server can entertain concurrently was
set to a conservative 256, which thereby necessitates a smaller margin for
error. To emulate realistic TCP traffic interarrival times, the transmission
rates employed for this evaluation scenario were typical fast transmissions
(tv_fast), slower traffic originating from sparsely-connected regions (t4_siow ),
and the lengthier interarrival times of slow DDoS ().

Specifically, the aforementioned rates are defined as rational num-
bers Q and fall within the ranges ¢ fosr € Q(0.00 < tpy fose < 1.00),
ty_siow € Q(1.00 < tp_siow < 2.50), and ¢, € Q(1.75 < t,,, < 5.00). Note
the existence of Sintersect = {tintersect ‘ tintersect = to_siow Ntintersect = tm}
which further challenges the performance of the proposed approach given
|Sintersect| is much greater than would be exhibited in a real-world set-

ting.  Once more harnessing hping3 for traffic generation and following
100 100
80 80
[ [
g 60 g 60
€ c
[ [V
4 4
o 40 . o 40 .
a —a— Precision a —=— Precision
—e— Specificity —e— Specificity
20 —+— Accuracy 20 —— Accuracy
—— Syn Queue Size —— Max Clients
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8
Seconds Seconds
(a) Syn Flood (b) Slow DDoS

Fig. 8. SYN flooding and Slow DDoS mitigation results.

the blueprint laid out in Fig. [7} 50 connections were each established by
Clients 1 through 3 with the server, which resulted in 58.59% of the it’s
connection limit being occupied, as depicted at second 1 of Fig. BB} Fol-
lowing this first wave of transmissions, 50 additional threads were then
consumed by Client 4 with interarrival times encompassed by tp_siow, as
given by 78.13% of that available shown at second 3 of Fig. At ap-
proximately second 4, Clients 5 and 6 then began generating slow DDoS
traffic leveraging the interarrival times encapsulated by t,, with the aim of
overtaking 128 connections each.

The malicious requests resulted in 22.27% of the server’s maximum num-
ber of connections initially being exhausted at second 5 by the attack, as
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displayed in Fig. and ultimately increased to 24.61% two seconds later.
At this point, 193, or 75.39% of the malicious sources were successfully fin-
gerprinted and subsequently denied by the switch. Furthermore, the switch
dropped 11 more slow DDoS connections by second 10, which was in fact
the dynamic value calculated for number of legitimate requests the switch
can expect to receive consecutively (i.e., est,,) per time window W in this
use case. Ultimately, the amount of the legitimate sessions that did not
lose service never extended below 96.5%, and it only took two seconds from
session exhaustion to open up est,, connections for new users; thus, the au-
tomatic retransmissions of the 3.5% (7) of benign clients that temporarily
lost their connections would have granted them service again with negligible
latency.

5.3. IoT Fingerprinting Assessment
5.3.1. Dataset Selection

With forensic investigations necessitating fine-grained artifact extraction,
this use case should not only be evaluated on its binary classification of
IoT versus non-IoT, but it ability to fingerprint the specific device itself.
To perform this evaluation strategy, the network traffic captures taken by
Sivanathan et al®? were instrumented for training and testing, given its
variety of encapsulated devices. Specifically, the devices and the amount
of packets each utilized for training are listed in Table }] In addition,
the proposed approach was trained to fingerprint the source devices using
artifacts from a single TCP packet. Consequently, note that for the in-
terarrival times ¢ corresponding to a specific source device d and the time
taken for fingerprinting a device tfingerprint, the source to output a given
packet tsource, and the switch to process a given packet tsyiten, approaches
necessitating the analysis of 5 consecutive packets for fingerprinting devices
would require time ¢ fingerprint, = Zizl(idm + tsource, T tswitch, ), Versus
Ltingerprinty = tswitch, for the proposed use case.

5.3.2. FEzecution

To arrive at the PART model, the first 50,000 packets associated with a
given device in Table |3| were extracted until 1 million packets were reached.
The associated IP and TCP headers of the aforesaid packets were subse-
quently placed in a CSV file for training of the PART model via the Weka
tool 1% The resultant 851 rules were then written to a text file that was
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parsed by the Python script elaborated upon in Alg. which resided on
the controller for table entry population. Subsequently, another 1 million
packets were transmitted through the P4-programmed switch by way of

tcpreplay.

Index Device Name ‘ #Packets‘ Type
a SmartThings 50,000 IoT
b AmazonEcho 50,000 IoT
c NetatmoWelcome 50,000 IoT
d TP-LinkDayNight CloudCamera 50,000 IoT
e SamsungSmartCam 50,000 IoT
f Dropcam 50,000 IoT
g InsteonCamera 50,000 IoT
h WithingsSmartBabyMonitor 50,000 IoT
i BelkinWemoSwitch 50,000 IoT
j TP-LinkSmartPlug 15,301 IoT
k iHome 22,820 IoT
1 BelkinWemoMotionSensor 50,000 ToT
m NESTProtectSmokeAlarm 1,430 ToT
n NetatmoWeatherStation 16,760 IoT
0 WithingsSmartScale 1,923 IoT
p BlipcareBloodPressureMeter 90 IoT
q WithingsAuraSmartSleepSensor 50,000 IoT
r Light BulbsLiF XSmartBulb 26,523 TIoT
S TribySpeaker 49,401 IoT
t PIX-StarPhotoFrame 16,228 ToT
u HPPrinter 38,596 IoT
v SamsungGalaxyTablet 50,000 NIoT
W NestDropcam 31,818 IoT
X Windows Laptop 50,000 NIoT
y MacBook 50,000 NIoT
z AndroidPhone 20,156 NIoT
aa Iphone 8,954 NIoT
ab TPLinkRouterBridgeLAN 50,000 NIoT

Table 3. IoT and NIoT devices in the dataset
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5.3.3. Results

Every fingerprint the switch made was immediately pushed to the controller
in order to aggregate the results, which are visualized in the confusion
matrix heatmap depicted in Fig. [0
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Fig. 9. Confusion matrix of the IoT fingerprinting results

By taking into account the indices of the devices in Table[3|and their cor-
responding classification rate, the highest misclassification rate was given
by the Android phone of approximately 8.886%, with roughly 8.499% of its
records being wrongly fingerprinted as the Samsung Galaxy tablet. Simi-
larly, the Samsung Galaxy tablet had the second highest misclassification
rate of precisely 4.16% with exactly 4.072% of its packets being finger-
printed as the Android phone. Additionally, it can be observed in Fig. [9]
that the devices associated with higher misclassification rates map to those
with less training samples in As a result, this suggests that per-device
misclassification rates can be reduced merely by incorporating more sam-
ples for these devices. The overall accuracy of the proposed approach is
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portrayed in Table[d As shown, approximately 99.581% and 0.419% of the
1 million packets were correctly and incorrectly fingerprinted as being IoT
devices, respectively.

ToT |  Non-IoT | Total \
Correct 99.9668 % 98.2825 % 99.5809 %
Incorrect 0.0332 % 1.7175 % 0.4191 %
Total 770,890 229,110 1,000,000

Table 4. The accuracy of the proposed IoT fingerprinting approach.

6. Conclusion and Future Directions

Network forensics has long been used for fingerprinting network events and
extracting important artifacts for investigation purposes. Nevertheless, tra-
ditional forensic procedures will continue to suffer from latency and poor
incident response as long as they fail to keep pace with the current tech-
nology trends. To this end, we proposed the transformation of network
forensic procedures into that functioning at line rate by leveraging the new-
found programmable switch technology. In turn, we presented two use cases
applicable to major areas of concern within the network forensic commu-
nity. The first use case remediates DDoS attacks by employing dynamic
thresholds from line-rate artifact extraction offered by the switch to infer
contemporary DDoS in real time. The empirical results confirm that the
approach efficiently mitigates both UDP amplification and SYN flood at-
tacks, and significantly reduces the remediation time of slow DDoS. The
second use case facilitates forensic investigations connected to the vulner-
able IoT paradigm via employing a rule-based PART learning algorithm
on the switch in order to accurately fingerprint the origin device from a
single TCP packet, at line rate. Further, the IoT fingerprinting mechanism
was automated to translate the output of rule-based learning algorithms to
P4 programs. The results show that the approach can fingerprint devices
with 99% accuracy. We are optimistic that the proposed approaches will
promote the utilization of programmable switches in a range of network
forensics procedure, in addition to that presented. Moreover, we anticipate
our procedure for automating the integration of rule-based classifiers into
the data plane will inspire a number of other switch-based ML advance-
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ments within the forensics community.

For future work, both use cases will be deployed on actual hardware
switches; while BMv2 has been widely utilized for P4 development, it
can not offer the precise resource utilization assessments and fine-grained
nanosecond-level measurements that a hardware switch can. Secondly, ex-
ploring further avenues to compact ML classifier output to P4 code would
facilitate additional advancements within both the network forensic and P4
communities. To this effect, subsequent endeavors will explore the integra-
tion of other ML algorithms within programmable data planes.
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