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Internet of Things (IoT) is becoming the new frontier in digital forensics due to the abundance of IoT
devices appearing in day-to-day life. The diversity and complexity of IoT ecosystems pose a considerable
challenge to digital investigators that demand novel approaches. Electromagnetic side-channel analysis
(EM-SCA) has been proposed as a promising window to gather forensically useful information from IoT
devices. Machine Learning (ML) techniques are instrumental when performing EM-SCA on IoT devices.
Our work aims to investigate how machine learning can be applied to accurately identify complex ac-
tivities on IoT devices from their generated electromagnetic noises. To this end, a range of classification
models were created, including deep learning models, to predict the activity from the electromagnetic
noise emitted while the device performed the activities. A dataset was generated by using ten different
well-known sorting algorithms with diverse computational time complexities and running them on an
Arduino Leonardo device to represent a low-powered IoT device. The algorithms were continually sorting
arrays of 100 elements randomly generated in ascending order. Experiments were conducted to identify
which ML methods performed better with the generated data sets. Furthermore, more experiments were
conducted to identify how the methods perform depending on the window size of raw samples and the
number of examples against which they are trained. From the experimental results, it is possible to
predict which activity is being executed with a high level of accuracy (99.6%) with a convolutional neural
network (CNN). It was also found that Random Forests (RF) and Deep Learning (DL) are suitable ML
models for making predictions with EM-SCA.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the emergence of computers, Moore's law enabled engi-
neers to increase their capabilities with time. Besides making
computers more powerful and resource-rich, this trend has also
enabled the production of smaller and energy-efficient computing
devices such asmobile devices, that have less computing power but
can last longer on battery power. The ultimate result of those ad-
vances is the emergence of the Internet of Things (IoT); small
nalytics Research (CeADAR),
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ier Ltd. This is an open access artic
computing devices with sensors and networking capability that has
started to embed into our everyday lives including sports, health-
care, and smart-home systems (Lin et al., 2017).

The integration of IoT devices into everyday life makes it inev-
itable for law enforcement to encounter them in digital forensic
investigations (Du et al., 2020). In modern society, most people
carry a smartphone in their pocket andmany can have some kind of
wearable device such as a smart wristwatch or a personal health
tracking device. Therefore, an increasing number of IoT devices are
likely to contain important pieces of information related to digital
investigation. As a result, IoT forensics has gained significant in-
terest among the law-enforcement community and has become
recently a hot topic in the research community (Watson and
Dehghantanha, 2016; Yaqoob et al., 2019).
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The acquisition of digital evidence from IoT devices is a chal-
lenging task compared to traditional digital forensics for several
reasons. For example, traditional digital forensics involves devices
that have easily accessible non-volatile data storage such as hard
disks, solid-state drives (SSD), or removable media, e.g., secure
digital (SD) cards. When required, a forensic image of the storage
can be taken for analysis. In contrast, most IoT devices consist of on-
board flash storage that is difficult to access for forensic image
acquisition (Sayakkara et al., 2019a). This is due to the
manufacturer-specific custom hardware architectures used for IoT
devices. This problem already exists for smartphone forensics.
However, the high diversity of IoT device hardware architectures
has made it significantly more complex to perform IoT forensics. As
a result, it is highly necessary to find alternative approaches to
acquire forensic insights from IoT devices (Meffert et al., 2017;
Sayakkara et al., 2019a).

Electromagnetic side-channel analysis (EM-SCA) is the disci-
pline of gathering information about the internal operations of
digital electronics by analysing the electromagnetic noise emis-
sions they produce. These emissions are a by-product of the high-
frequency switching operations of semiconductor electronics
(Zankl et al., 2018). EM-SCA has been recently proposed as a
method to acquire forensically useful insights from IoT devices
(Sayakkara et al., 2018, 2020a). When an IoT device that is powered
on is seized by law-enforcement, EM-SCA procedures can poten-
tially be performed immediately on the device. It has been pro-
posed that various information can be detected with EM-SCA-
based approaches such as tampered firmware, software behav-
iour, and cryptographic algorithms (Sayakkara et al., 2019a). Due to
the non-invasive nature of acquiring and analysing EM emission
signals, there is no need to physically tamper with the device being
investigated.

The emissions that are produced by IoT devices are weak signals
that are not detectable beyond a few centimetres from the device
unless powerful signal amplifiers are used. However, unlike unau-
thorised eavesdropping of devices through EM-SCA, a forensic in-
spection of a device does not have a requirement to make
observations from a distance. The side-channel EM emissions from
IoT devices are wide-band signals that are highly dimensional and
can be captured with fast sampling rates. Therefore, when captured
and stored for analysis, EM data files, called EM traces, usually take
up multiple gigabytes. When analysing such EM traces for identi-
fying known patterns, applications of artificial intelligence such as
Machine Learning (ML) have been explored. ML algorithms are
capable of identifying patterns in large and high dimensional data
that are not easily recognisable by humans (Sayakkara et al., 2019b).

The application of ML techniques for IoT software behaviour
identification still faces many challenges that need to be addressed.
From a classification point of view, an IoT device's firmware can be
in a wide variety of internal states that can result in a large number
of potential classes. Even when considering the same known soft-
ware activity, slight changes in the variables used within the soft-
ware activity can affect its emission patterns. Therefore, it is
necessary to further evaluate ML-based methodologies for classi-
fying complex software behaviours under varying conditions.

1.1. Contribution of this work

Our work aims to investigate how machine learning can be
applied to accurately identify complex activities on IoT devices
from its generated EM noise and assess the influence of EM sample
parameters. Towards this goal, this work explored the performance
of ML-based models for classifying complex software programs
running on a representative IoT device with randomised internal
variables. In the evaluation, a dataset was generated using
2

implementations of multiple well-known sorting algorithms
running on the target device that use randomly generated input
data arrays. The contribution of this work can be summarised as
follows:

C Demonstration thatmachine learningmodels trained on past
data of complex software activities recognise these activities
in future recordings.

C Experimentation showing that when using EM signals for
ML-based classification purposes, the use of data in the fre-
quency domain is more effective than in the time domain
and other feature extraction methods.

C Among various ML methods evaluated, deep learning ap-
proaches outperform all the other algorithms when used for
classifying complex software activities using EM side-
channel data.

2. Background

This section covers the background information related to EM-
SCA and the application of ML in its context. Subsection 2.1 pro-
vides a comprehensive overview of EM-SCA including methods of
data acquisition and tools available for this purpose. Subsection 2.2
provides an overview of ML techniques. Subsections 2.2.1 and 2.2.2
provide background information on two ML architectures, namely;
Random Forest and Deep Learning methods. Finally, Subsection 2.3
illustrates the current status of applying EM-SCA for digital
forensics.

2.1. Electromagnetic side-channel analysis

The earliest work on electromagnetic information leakage was
published in 1985. Van Eck (1985) demonstrated that cathode-ray
tube (CRT) video displays emitted sufficient EM emissions that
could be used remotely to reconstruct the content shown on the
display. Later, research on eavesdropping computing devices
through their unintentional EM emissions started gaining interest
among researchers with various objectives such as spying on
computer monitor content (Elibol et al., 2012), retrieving crypto-
graphic keys (Kocher et al., 1999), and identifying abnormal de-
viations of software execution due to malware (Nazari et al., 2017).
IoT devices pose more opportunities for EM-SCA due to the abun-
dance of themwithin the reach of an attacker in contrast to desktop
and laptop computers that tend to stay under the possession of
their respective owners.

When machine code instructions are being executed on the
processor of an IoT device, sequences of binary digits are moved
around the processor's registers rapidly. This storing and resetting
operations of values in registers impact the draw of electrical cur-
rent by the processor. The higher the hamming weight of the value
being stored, the higher the impact it has on the current draw of the
processor. This varying electrical current draw results in varying EM
noise to be generated from the circuitry of the processor (Maxwell,
1865). Such weak EM noise can get modulated into any powerful
radio frequency signal that is already present in the vicinity. There
are two potential radio frequency signal sources on IoT devices; the
processor clock and on-board radio transceivers in the case of
system-on-chip (SoC) devices (Camurati et al., 2018).

Observation of EM emissions from IoT devices requires speci-
alised equipment. In the traditional form, oscilloscopes with
compatible EM probes can be used to capture the signal (Peeters
et al., 2007). The identification of the exact frequency of the
leakage signal requires a certain amount of trial-and-error pro-
cedure. In the worst case, the attacker has to sweep through the EM
spectrum looking for suspicious signals. However, the most
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common practice is to use the clock frequency of the device being
observed as the frequency of the EM emission signal. When
capturing EM signals, several important factors need to be met at
the hardware level to ensure successful data acquisition. Firstly, the
frequency range of the observation device has to cover the clock
frequency of the device being attacked. Secondly, the sampling rate
of the device has to be fast enough. The sampling rate is the number
of samples taken at the tuned frequency per second. Finally, the
equipment has to support a wide enough bandwidth in order to
capture as many signals around the leakage signal as possible.

As a much cheaper and more flexible alternative to oscillo-
scopes, software-defined radios (SDRs) devices can be used. These
devices are popular among wireless hackers, hobbyists, and secu-
rity enthusiasts (Tuttlebee, 2003). An SDR device makes use of a
bare minimum hardware layer that can be tuned to a specific fre-
quency and digitally sample EM signals with the help of a fast
analogue-to-digital converter (ADC). Such digital samples are later
processed with software using various software-defined radio
packages e among which GNURadio is the most popular open-
source package (Cass, 2013; Ossmann, 2016; Ettus and Braun,
2015; Blossom, 2004). Each sample taken from an SDR device
represents the amplitude of the tuned frequency at a specific
instance of time. In this work, an SDR is used to sample EM emis-
sions from a target IoT device due to the flexibility it offers.

2.2. Relevant machine learning methods

In the last decades, thanks to the increase of computational
power and to the development of artificial intelligence, researchers
can easily implement ML methods and run them on their com-
puters to conduct experiments (Marsland, 2015). Arthur Samuel,
one of the pioneers of ML, defined it as the “field of study that gives
computers the ability to learn without being explicitly pro-
grammed” (Samuel, 1959). Supervised Learning is the more
developedML learning branch (Marsland, 2015) and it is the branch
used in this worke specifically Random Forests and Deep Learning.

2.2.1. Random forests
Random Forests (RF) select those attributes that are able to

distinguish elements that belong to different groups and at the
same time, divided groups that belong to the same class. RF try to
create different trees by choosing different attributes from the
database. This supervised method was introduced in 2001 by
Breiman (2001), and has become one of the most important su-
pervised methods in ML. Its main advantages are its great predic-
tive power and its rapid execution, and for these reasons, it is an
ideal algorithm for the selection of variables. The RF model can be
used for both regression and classification, but they aremainly used
for classification. RF combines several binary trees that it generates
from training data by randomly selecting a subset of variables
(Genuer et al., 2010). The two main RF parameters are: mtry
(number of randomly selected variables in each split) and ntree
(number of trees that make up the forest). RF are very suitable for
feature selection because they have both high levels of accuracy
and also a very quick execution time (Genuer et al., 2010) and easy
to parallelize (Santner et al., 2009).

2.2.2. Deep learning methods
Deep Learning (DL) is a group of algorithms based on Artificial

Neural Networks (ANN) (LeCun et al., 2015). DL models are
composed of multiple layers - each includes a number of nodes.
Multiple DL layer architectures are developed to capture different
correlation patterns in the input; the popular ones are the con-
volutional layer, the long short term memory layer, and the atten-
tion layer (Goodfellow et al., 2016). For convolutional neural
3

networks (CNN), DL performs hierarchical feature extraction across
its multiple layers, where the first layers deal with low-level
abstraction features and the later layers compose these low-level
features to capture high-level abstraction features. DL algorithms
have excelled in many domains such as image and audio recogni-
tion, and object detection (Deng et al., 2014).

DL learns by backpropagation (Goodfellow et al., 2016). For an
input example, the back propagation algorithm (a gradient descent
optimization technique) adjusts the weights of the model (weights
determine if a signal is relevant to go to the next layer) to minimize
the mismatch between the predicted output of the DL model with
respect to its true label. After a number of epochs, the weights are
tuned progressively and the training stops when the difference is
minimized, the trained model could then be used to predict labels
of new inputs (e.g. data in the testing set).

One of the main advantages of DL is that it can learn feature
extraction automatically from the labeled data without using hu-
man expert knowledge. DL algorithms are well-known for being
able to learn from big data sets. Most ML methods’ performance
plateaus when given a big enough number of training examples,
whereas a DL model performance keeps improving and absorbing
informationwith data sets of millions of examples. The downside is
that training a deep learning model is generally more time-
consuming than the rest of the methods and also, due to its inter-
nal complexity of layers and nodes, it is more difficult to under-
stand the internal logic of its predictions.

2.3. Electromagnetic side-channel analysis for forensics

Recent work has suggested to use EM-SCA in digital in-
vestigations where classical methods fail (Sayakkara et al., 2018,
2019b). Most of the potential uses of EM-SCA in digital in-
vestigations have already been realized in the information security
arena. Detection of the specific make andmodel of a device (Yilmaz
et al., 2020), the detection of its internal states of software and
hardware (Yilmaz et al., 2019; Chawla et al., 2019), and the retrieval
of cryptographic keys from them (Ronen et al., 2017) in realistic
scenarios have been performed in the recent past. Therefore, these
techniques need to be leveraged into practical digital investigations
by providing the necessary facilities to the investigators. Develop-
ment of tools that are easy-to-use for digital investigators with a
minimum knowledge in EM-SCA is such a timely requirement.
EMvidence is a tool that is currently under constant development
towards this goal (Sayakkara et al., 2020b,c). A workshop was
delivered at Digital Forensic Research Workshop (DFRWS EU) 2020
describing EMvidence's design and implementation. An explana-
tion for its use, alongside the content of the workshop is available
on GitHub.1

3. Electromagnetic side-channel raw sample dataset

The EM noise emission patterns from IoT devices can depend on
amultitude of factors such as the type of the processor, the layout of
the printed circuit board (PCB), and the characteristics of the soft-
ware instructions running on the processor. As a result, it is
necessary to experiment with a dataset that is generated on a
hardware and software platform easily to reproduce. To this end,
the first step was to select a representative IoT device platform that
is sufficiently representative of a wider variety of IoT devices and
also easy to experiment with.

As the target IoT device, an Arduino Leonardo board was select.

https://github.com/asanka-code/DFRWS-EU2020-Workshop-InsightsfromWaves
https://github.com/asanka-code/DFRWS-EU2020-Workshop-InsightsfromWaves
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This is a general-purpose prototype board that has a variety of
input/output pins available to be used in a variety of applications.
The device consists of an ATmega32u4 micro-controller at its heart
that operates at 16 MHz clock frequency with the help of an
external oscillator on-board. The device is powered by 5 V power
supply through a USB port, which is also used for the purposes of
reprogramming the device. Due to the limited random-access
memory (RAM) and read-only memory (ROM) capacity (32 KB of
flash memory for storing programs and 2.5 KB of RAM), the device
cannot run with an operating system. A manufacturer-provided C-
like programming language is used to directly write applications to
the device that can run without multi-tasking. The small resource
profile of the device resembles many battery-operated IoT devices
in common use.

When the same software is running on a processor multiple
times, it is unlikely that the order of machine code instructions
being executed will be the same each time. This is due to the dif-
ference in the input data provided to the software in each case. In
consequence, the EM emission pattern can get affected and become
slightly different from each case as well. For the purpose of simu-
lating such an extreme case, this work uses 10 sorting algorithm
implementations each sorting a 100-element long randomly
generated integer array. The sorting algorithms are chosen in a way
to include a diverse set of computational time complexities in the
dataset (see Table 1). The randomness of the input data to the
sorting algorithms ensures that their instructions sequences are
different at each iteration. Fig. 1 illustrates the average execution
time of each sorting algorithm implementation when they are
sorting 100 randomly generated integers.

The EM noise of the processor is emitted from various regions of
the processor chip across various frequency channels with varying
amplitudes. Therefore, when an H-probe antenna is used closer to
the processor chip to capture EM noise, the exact location of the
antenna over the processor affects the signal being captured. Fig. 2
depicts the procedure of placing an H-probe antenna over the
processor of the Arduino Leonardo device. When the antenna is
centred directly over the processor, a weaker signal is observed
with lower amplitudes and fewer frequency features. By slightly
adjusting the position of the antenna over the processor and
observing the emission signal, it was empirically identified that
when the H-loop antenna is located exactly over the index corner of
the chip, the strongest EM emission signal was registered. The
necessity for close proximity of the antenna to the chip is due to the
low signal amplification of the inexpensive SDR device used in this
work. However, with more powerful signal acquisition equipment,
it would be possible to capture EM radiation from an increased
distance. Fig. 3 (a) and (b) illustrates the emission signal when the
H-loop antenna is placed at the centre and the index corner of the
processor respectively. Accordingly, the index corner of the pro-
cessor was chosen as the default antenna position throughout the
Table 1
Time complexity of the different sorting algorithms used.

Algorithm Time Complexity

Best Average Worst

Bubble U(n) Q(n2) O(n2)
Gnome U(n) Q(n2) O(n2)
Heap U(nlog(n)) Q(nlog(n)) O(nlog(n))
Insertion U(n) Q(n2) O(n2)
Merge U(nlog(n)) Q(nlog(n)) O(nlog(n))
Quick U(nlog(n)) Q(nlog(n)) O(n2)
Radix U(nk) Q(nk) O(nk)
Selection U(n2) Q(n2) O(n2)
Shell U(nlog(n)) e O(n2)
Stooge U(nlog3/log1.5) Q(nlog3/log1.5) O(nlog3/log1.5)
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rest of the data collection procedure for this work.
When generating the raw sample dataset for the purpose of

using it for ML experiments, the following data collection proced-
ure was followed. The data collection was performed in two phases
with a time gap of 1 h between them in order to produce two sets of
independently taken data for each sorting algorithm. During that
time gap, the Arduino Leonardo device was turned off and left
unplugged from the power supply. During each phase, the Arduino
device was programmed with each sorting program, one at a time.
The basic skeleton of each Arduino program is depicted in Algo-
rithm 1. Once programmed with a specific sorting algorithm, the
EM emissions of the device are recorded for T time period, where T
was set in the two phases to 8 s and 4 s respectively. The rationale
being to use them separately as training and testing data for the ML
models.

Algorithm 1. Structure of each Arduino program

For data capture, a HackRF SDR2 was used with the centre fre-
quency set to 288 MHz and sampling rate set to 20 MHz (Ossmann,
2016). Even though the clock frequency of Arduino Leonardo is
16 MHz, it was empirically identified that certain harmonics of the
frequency provide much stronger leakage signals, hence the choice
of 18th harmonic, which is 288 MHz. Each EM trace was saved into
a NumPy array file (very frequent in python) in order to ease the
processing of them later. In phase-1, the EM trace file for each al-
gorithm was approximately 1.4 GB in size causing the first dataset
to be approximately 14 GB in size. In phase-2, an EM trace file was
approximately 550 MB in size resulting in a dataset of approxi-
mately 5.5 GB in size. Fig. 4 illustrates the power spectral density of
the recorded signals for 9 of the sorting programs in phase-2. Note
that the signal of bubble sort program is shown in Fig. 3).
4. Experimentation and results

In this section, the experiments conducted are outlined to see
how well the prediction of the software activity a device is
executing performs by just listening to the electromagnetic noise it
produces.

4.1. Methodology

For each of our experiments, the methodology outlined in Fig. 5
was followed. It includes five main steps: 1) dataset generation, 2)
for a chosen window size slicing time series of raw samples to
windows of consecutive raw samples, 3) applying feature engi-
neering, 4) ML model generation, and 5) ML model evaluation.

4.1.1. Preparation of the raw sample dataset
As described in Section 3, the first step involved collecting raw

samples for two data sets: the training set and the testing set. For
each of the ten sorting algorithms, a time series of approximately
2 https://greatscottgadgets.com/hackrf/.
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Fig. 1. Average execution time for the 10 sorting programs running on Arduino Leonardo device. The average values were calculated by logging 200 consecutive executions of each
program with randomly generated 100-elements long arrays as inputs.

Fig. 2. Positioning of the H-loop antenna over the processor of Arduino Leonardo device to maximize the reception of leakage signal.
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175 million raw samples was generated in the training session, and
a time series of approximately 76 million raw samples were
generated in the testing session. The raw training data and testing
data were gathered with a time difference of 1 h ensuring that the
antenna was in the same position. Next each time series of raw
samples was sliced into windows of consecutive time steps using a
chosen time window, each window of raw samples would then be
transformed into an input example through feature engineering.
Different time windows were applied to see the performance with
each size. There is a trade-off between the accuracy and the need to
process as little information as possible. The larger the window, the
higher the accuracy of the model, but the more expensive it is
making the predictions. All the raw samples were not used to
generate training examples and testing examples for a chosen
window size. Instead, we configured the number of training ex-
amples and the number of testing examples specifically for each of
5

our experiments. A typical dataset configuration for our experi-
ments would include 25,000 examples in the training set and
25,000 examples in the testing set.

4.1.2. Feature engineering
Each window of a chosen window size of consecutive raw

samples was converted to an example, where the number of fea-
tures in the example would depend on our feature engineering
approach, The first approach is directly working with samples from
the time domain, so the number of features in each example is
equal to the chosen window size. It has the advantage that there is
no extra cost of running any transformation algorithm. The second
option is to transform each time window into the frequency
domain by applying the Fast Fourier transform (FFT), which cal-
culates the Discrete Fourier Transform (DFT) of a given time win-
dow, again the number of frequency features in each example is



Fig. 3. Power spectral density (PSD) of the EM emission when running Bubble sort algorithm with two different antenna positions.

Q. Le, L. Miralles-Pechu�an, A. Sayakkara et al. Forensic Science International: Digital Investigation 39 (2021) 301308
equal to the chosen window size, as shown in Fig. 6.
Lastly, it is also quite effective to extract features in the time

domain and in the frequency domain. This drastically reduces the
information taken by the classifier (the input of the model), but at
the same time, it increases the computational costs since all the
extracted features have to be calculated.

As with other work in the area related to time series domain
(Ponce et al., 2016), the features extracted in the time domain are:
mean of the signal, standard deviation, root mean square, variance,
median, number of the zero-crossing points, skewness, kurtosis,
first and third quartile, interquartile range, and correlation. And the
features extracted in the frequency domain are: average, median,
variance, root mean square, entropy of the signal, Shannon spectral
entropy, spectral centroid, flatness, mode frequency, peak fre-
quency, kurtosis, and skewness.
4.1.3. Machine learning models
In this work, a wide range of machine learning models were

considered. Support Vector Machines, Decision Trees, K-Nearest
Neighbour, and XGBoost were evaluated with their default settings.
A Random Forest Classifier was used with 500 trees and a
maximum number of features to be the square root of the number
of columns (number of input features), together with bootstrapping
activated. Each the above classifiers were trained on input data
after being preprocessed by the MinMaxScaler transformation, i.e.,
each input feature was scaled and translated on the training set to
be in the range between 0 and 1; and the same transformation was
applied on the data in the test set.

For the deep learning model, a Convolutional Neural Network
was used with four layers. The first two layers were two convolu-
tional layers - using 32 filters and 64 filters respectively. The out-
puts of the second convolutional layer were flattened and
connected to a fully connected layer with 64 nodes, which was then
connected to the final output layer to predict the activity label. As
the convolutional layers in the model were used to extract features
across a fixed window of consecutive features, the kernel size for
both the convolutional layers was set to 8 and large strides were
used (2 and 4) e together with a max pooling value of 4 to increase
the depth of field of each node in the first dense layer and to reduce
6

the model complexity. The CNN model was trained with the stan-
dard Adam optimization algorithm.

4.1.4. Model training and evaluation
For each experiment and for a chosen machine learning model,

we trained it on the training set, and evaluated its performance on
the testing set using classification accuracy as the performance
metric.

Once the ML model is built, if a real-world deployment was
needed, there would only be three steps: applying the time win-
dow, transforming into the frequency domain with the FFT, and
predicting the activity with the generated ML model.

4.2. Results

In the following subsection we present an explanation and the
results for the different experiments.

4.2.1. Experiment I: selecting between time domain, frequency
domain, and feature extraction

Our first experiment was designed to select the appropriate
feature engineering to apply on each window of raw sample. We
considered three feature engineering approaches, as discussed
earlier: 1) using directly a window of raw samples from the time
domain, 2) converting each window of raw samples from the time
domain to the frequency domain using FFT, and 3) using feature
selection. The experiment was conducted using 25,000 examples
for the training set and 25,000 examples for the testing set. A
Random Forest Classifier was employed with the hyper-parameters
as described in 4.1. As shown in Fig. 7, according to the first
experiment, predicting from the amplitudes of the frequency
domain is much more accurate than the other options. In Fig. 8, the
confusion matrix of the best model is shown; random forest with a
time window of 1,000 samples in the frequency domain and an
accuracy of 93.56%.

4.2.2. Experiment II: changing the antenna position
One interesting question in this research is how the position of

the antenna on the device affects the performance of the classifiers.



Fig. 4. Power spectral density (PSD) of the EM emission when running 9 sorting algorithms. (a) Gnome sort, (b) Heap sort, (c) Insertion sort, (d) Merge sort, (e) Quick sort, (f) Radix
sort, (g) Selection sort, (h) Shell sort, and (i) Stooge sort. Bubble sort is not depicted here.

Fig. 5. Steps used in the methodology to predict the sorting algorithm executed by the Arduino.
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First, the EM traces were created with samples of the ten sorting
algorithms with arrays of 100 elements. Second, a new set of EM
traces were created with the same algorithms with the same
number of elements but, with the position of the antenna changed.
After conducting this experiment, the accuracy of the model was
7

12.75%. As can be seen in Fig. 9, the accuracy of the classes is very
low.

4.2.3. Experiment III: selecting a machine learning algorithm
Experiment 1 demonstrates that machine learning models



Fig. 6. Transforming a signal from the time domain to the frequency domain with the Fast Fourier Transform.

Fig. 7. Accuracy of the predicting in time domain, frequency domain, and with extracted features in time and frequency.

Fig. 8. Confusion matrix of the first experiment.
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Fig. 9. Confusion matrix of the first experiment.

Fig. 10. Performance of different ML methods trained with 25,000 samples with the ten different sorting algorithms.
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performed best on data in the frequency domain. In this experi-
ment, different machine learning algorithms were evaluated to see
which ones performed best when being trained on data in the
frequency domain: Support Vector Machines, Random Forests, K
Nearest Neighbour, XGBoost, Decision Trees, Random Forests, and
CNN. As for the dataset, the same dataset in the frequency domain
was used as in Section 4.2.1 with a training set of 25,000 examples,
a test set of 25,000 examples, and the window size of 1,000 time
steps.

The performance of all the models is shown in Fig. 10 and the
time for running the experiments with each method is shown in
Table 2. From the results, the two strongest models were selected,
i.e., CNN and Random Forests, to carry out the following
9

experiments.

4.2.4. Experiment IV: impact of sample window size
In this experiment, the effect of choosing different window sizes

for the signal. For the CNN and RF models, a list of window sizes of
500, 1,000, 2,000, 5,000, 10,000, and 15,000 time steps were cho-
sen. Each time series of a chosen window size is converted into an
input example of the same size with an equal number of features in
the frequency domain using Discrete Fourier Transform (DFT).

For each window size, a training set of 25,000 examples was
used from the training recording session, and a test set of 25,000
examples was used from the test recording session.

The results of the experiments are shown in Fig. 11. For a small



Table 2
Time in seconds to build the ML model.

XGB SVM DT K-NN RF CNN

402 1027 50 1240 229 250
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window size, i.e., the window size of equal or less than 500, RF
performed better than the CNN model. For all the window sizes
equal or bigger than 1,000, the CNN performed better than RF, even
though the margin of improvement is small. The CNN model
trained on input examples with a window size of 15,000 time steps
achieved an accuracy of 99.6% on the test data.
4.2.5. Experiment V: impact of the number of examples
These experiments were designed to study the effect of the

number of training examples on the performance of the two
models. For all the experiments in this Section, the window size of
one input was fixed to be the default value of 1,000: each 1,000 time
step signal time series was converted to an input sample of size
1,000 in the frequency domain using DFT.
Fig. 11. Experiment of varying the wi

10
For each of the number training examples n_train in the list of
{5,000, 10,000, 15,000, 25,000, 40,000, 80,000}, a training set of
n_train examples was generated, while the test set was fixed to be
of 25, 000 examples. As shown in Fig. 12, as the number of training
examples varied from 5,000 to 80,000, the accuracy of the CNN
model on the test set varied in the range 92.9%e93.8%; while the
CNN model performed better than RF for all values of ntrain, with a
bigger difference with a smaller number of training examples.
4.2.6. Performance of the best model on the whole test recording
session

The model that performed best in the experiments in Sections
4.2.4 and 4.2.5 was the CNN model with its input computed from a
window of 15,000 time steps; it was trained with 25,000 examples
and achieved an accuracy of 99.6% on the test set of 25,000 ex-
amples. To verify the performance of this trained model, its accu-
racy was computed on all the examples of the test recording
session. Fig. 13 shows the confusion matrix of this test, where the
model achieved an accuracy of 99.8%.
ndow size (number of features).



Fig. 12. Experiment of varying the number of training examples.
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4.3. Discussion

The experiments outlined in Section 4.2.1 demonstrate that ML
models perform best when working on data in the frequency
domain. One of the contributions of this work is that a consistent
data recording protocol is necessary for machine learning models
trained on past data to performwell on data recorded in the future.
In this work, this generalisation performance was achieved by
fixing the location of the antenna with respect to the Arduino de-
vice. In contrast, when the position of the antenna was moved
between the two recording sessions, the model trained on the
training set performed very poorly on the test data, reaching almost
random performance.

The experiments on varying the window size to calculate input
show that the performance of the deep learning model improved
strongly when the window size was increased e going from 86.6%
for a window size of 500 time steps to 99.6% for a window size of
15,000 time steps, as shown in Fig. 11. On the other hand, when the
window size was fixed to 1,000 and varied the number of training
examples from 5,000 to 80,000 the performance of the CNN model
only improved from 93.0% to 93.8%, as shown in Fig. 12). For com-
parison, while the amount of training data required for a CNN
11
model trained on 80,000 examples of a window size 1,000 time
steps is bigger, its performance of 93.8% accuracy is inferior to the
performance of 97.0% accuracy for a CNN model trained on 25,000
training examples of a window size of 2,000 time steps. It can be
concluded that choosing the right window size is more impactful
than increasing the number of training examples on the perfor-
mance of the ML model. For instance, a window size of 2,000 time
steps (corresponding to an accuracy of 97.0%) is a sweet spot of
achieving a high predictive performance of the trained model and
having a low processing time.

This work has shown that deep learning models can be used to
precisely identify subtle details of running programs on IoT devices
opening up the opportunity to acquire forensic insights from IoT
devices during the triage examination phase of a digital forensic
investigation. The trainedmodels can be integratedwith tools, such
as EMvidence (Sayakkara et al., 2020b) for the application in
practical forensic investigations. As it has been revealed from the
experiments, the exact antenna position during data acquisition to
build deep learning models should be used consistently in an
investigation scenario to acquire EM data from a target device. This
limit could be addressed by a more robust training data collection
protocol in the future.



Fig. 13. Confusion matrix of the model with the best performance when testing on the data from the whole test recording session.

Q. Le, L. Miralles-Pechu�an, A. Sayakkara et al. Forensic Science International: Digital Investigation 39 (2021) 301308
The high accuracy achieved with data produced by signal
observation for just a few seconds hints that it is sufficient to
capture data for a very short period of time in real-world scenarios.

5. Conclusions and future work

In this work, we used a wide variety of software activities as
target classes for ML classification. Therefore, the dataset is suffi-
ciently diverse in terms of computational complexity. The objective
was to identify machine learning methods that are suitable to
classify a wide variety of software activities running on IoT devices.
The experimentation proves that it is possible to predict the activity
that a device is performing from the generated EM noise with high
levels of accuracy. ML classifiers are able to detect the executing
algorithm even when the elements are ordered differently, which
obviously requires a different order in the execution of the in-
structions of each sorting algorithm. Experiments have been con-
ducted over well-known sorting algorithms to identify their
performance. Among the machine learning algorithms tested,
CNNs were found to be most effective in identifying individual
software activities.

5.1. Future work

As future work, two interesting avenues for investigation have
been identified. First, it is worth exploring different sizes for the
arrays. For example, what performance is achievable with an ML
model trained with arrays of 100 elements when the size of the
array of the testing examples is 10, 50, 500, 1,000, or 10,000 ele-
ments. We could also create a more robust deep learning model by
training it on data recorded frommultiple antenna locations, such a
model should be more robust with respect to the antenna location
when recording test data. As the new dataset will bemore complex,
we expect to develop more complex deep learning architectures to
fit it, which could include a combination of residual layer, attention
layer, or multiple input modules to integrate multiple processing
units. The logic behind the predictions of the models was not a
focus in this work. It would be interesting to know what features
12
(frequencies in this case) are more relevant for ML models. Addi-
tionally, the application of different explainable machine learning
techniques (Molnar, 2019; Montavon et al., 2018) on a trained
model to understand why and how the model makes a particular
decision.
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