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ABSTRACT Embeddings remain the best way to represent image features, but do not always capture
all latent information. This is still a problem in representation learning, and computer vision descriptors
struggle with precision and accuracy. Improving image embedding with other features is necessary for
tasks like image geolocation, especially for indoor scenes where descriptive cues can have less distinctive
characteristics. This work proposes a model architecture that integrates image N-dominant colours and
colour histogram vectors in different colour spaces with image embedding from deep metric learning
and classification perspectives. The results indicate that the integration of colour features improves image
embedding, surpassing the performance of using embedding alone. In addition, the classification approach
yields higher accuracy compared to deep metric learning methods. Interestingly, different saturation
points were observed for image colour-improved embedding features in models and colour spaces. These
findings have implications for the design of more robust image geolocation systems, particularly in indoor
environments.

INDEX TERMS Classification, Colour descriptor, Deep metric learning, Embeddings, Image geolocation,
Image retrieval, Indoor scenes.

I. INTRODUCTION

IMAGE geolocation is the act of determining the exact
location or narrowing down the possible search space to

the location where an image was taken. This task is crucial
for various applications, such as urban planning, tourism, au-
tonomous driving, and investigation of criminal acts such as
human trafficking and child sexual exploitation [1]–[4]. Al-
though this task may seem straightforward with the presence
of geolocation cues and metadata, the difficulty increases
as images are often stripped of this location information
intentionally for illegal activities. In other instances, the
information is lost through instant messaging/social media
platforms [5]. In addition, enhancement techniques aimed at
improving image quality sometimes inadvertently remove or
distort geolocation data embedded in the image.

At a broad level, the scene of the image can be indoors
or outdoor. Indoor scenes are often contained within the
boundaries of a building, such as rooms and corridors, while
outdoor scenes include open areas, roads, and landscapes.

With the presence of distinct cues and public references
in outdoor scenes, there is a better chance of geolocation
compared to indoor scenes, where GPS signals and location
cues are often not reliable or readily available [6], [7]. This
constraint to the low level and latent information in indoor
scenes and images necessitates the need for fine-grained, de-
scriptive cue generation and enhanced feature representation
for effective geolocation [8].

One of the best ways to effectively capture both low-
level and high-level visual features of a scene is the use of
embedding techniques. Embedding is a powerful computer
vision approach that allows high-dimensional data, such as
images, to be transformed into compact and meaningful
representations in a lower-dimensional space, easing tasks
such as similarity matching, clustering, and classification that
can be used to facilitate more accurate geolocation [6]. With
recent and continuous advances in deep learning, embedding
techniques have been extensively applied to image geoloca-
tion modelling.
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Embedding can capture a great amount of latent features,
including the texture and colour information of an image.
However, the proportion of information learnt by an im-
age embedding model is more tilted towards texture [9].
Indoor environments, such as hotel rooms, often lack the
distinctive structural landmarks present in outdoor scenes,
making visual geolocation inherently more difficult. These
environments tend to share similar layouts, furniture, and
lighting conditions in different locations, which can limit the
discriminative power of standard image embeddings. How-
ever, colour schemes such as wall tones, bedding, and decor
often vary significantly between hotels and serve as subtle
yet powerful cues for differentiation. Enhancing image em-
beddings with colour features helps capture these subtle vari-
ations, thereby improving the model’s ability to distinguish
between visually similar indoor scenes. For example, in hotel
room identification, leveraging dominant colour patterns can
significantly boost the accuracy of matching a query image
to its correct location within a large database of rooms. This
work proposes a model architecture that integrates image N-
dominant colour and colour histogram vectors with image
embedding techniques using deep metric learning (DML)
and classification methods to narrow down the search space
in indoor scene geolocation. It shows experimentally using
two major colour spaces that this approach achieves com-
petitive performance on Hotels-50K; an indoor scene dataset
provided to combat human trafficking.

In summary, the main contributions are the following:
• A proposed model architecture that generates and in-

tegrates the colour-improved image embedding fea-
tures to enhance the geolocation of indoor scenes. The
code is available open source at https://github.com/
OBA-Research/colourNembedding.

• Through experiments, this work observed and reported
on the saturation point of image embedding and colour
feature fusion.

• The work observed and reported on the model sensi-
tivity to the colour-improved features through accuracy
convergence rate and loss decay trends for classification
and deep-metric learning, respectively.

• For the task of combating human trafficking, this work
shows that the proposed method reduces the geolocation
search space with better chances of retrieving hotels of
interest.

II. RELATED WORKS
Image Geolocation: This has been a subject of extensive
research, encompassing both outdoor and indoor scene ge-
olocation. Various methodologies and techniques have been
explored to accurately determine the geographic location
of images, some leveraging the power of computer vision
algorithms and spatial analysis [10], [11]. [12] introduced
PlaNet model, which employed a Convolutional Neural
Network (CNN) to predict the location of photos based
on visual content by subdividing the Earth’s surface into
geographic cells. [13] approached the problem by match-

ing a ground view query image to a reference database
of aerial/satellite images. Although these cover a large ge-
ographical area, their application to a specific domain or
enclosed regions is highly limited. The indoor scene prob-
lem is more complicated as a result of increased variations
in light, shape, layout, and severe occlusions [8]. Due to
these, only a few research works focus on indoor image
and scene geolocation [2], [14] with an increasing trend in
hotel room identification to combat human trafficking [15]–
[18]. Recently, [18] proposed an object-centric approach to
hotel recognition, which involves ensembling object features
extracted from the image. [2] incorporated contextual infor-
mation at different spatial resolutions, as well as more spe-
cific features, in the CNN learning process. These approaches
suggest that breakthroughs in indoor scene geolocation using
computer vision techniques are highly dependent on image
feature engineering and representation.

In computer vision, the problem of image geolocation is
often seen as a classification or image retrieval problem.
State-of-the-art methods treat the task of geolocation as a
classification problem [2], [12], [19], [20] such as [12], [21]
subdividing the world map into a number of classes for deep
classification. With the classification approach, the model
is often trained using softmax loss, and the embeddings
produced by the penultimate layer of the model can be used
to facilitate geolocation through similar image retrieval [15].
Although higher accuracy, fine-grained geolocation, effi-
cient processing, and interoperability are often seen with
this approach, it can be rigid in its adaptability to unseen
classes [22], [23].

Image geolocation has also been addressed using DML in
large-scale datasets via embedding losses such as contrastive
loss, triplet loss, and ArcFace loss. A model is trained to
explicitly learn the embedding of data in a latent space,
where the similarity is maximised for semantically similar
data points and minimised otherwise [13], [15], [24]–[26].
The main advantages of this model are flexibility in querying,
scalability, and adaptability, but it can be computationally
expensive [27]–[29].

Image Feature Representation: Texture, colour distri-
bution, and shape properties in an image can be used as
distinguishing features for image classification, matching,
and retrieval, allowing the correlation of similar images with
known geolocations [6], [30], [31]. These image properties
have been individually explored for effective geolocation,
with good results in different scenarios and problem domains.
To accommodate the complexity of scene types, both global
and local spatial information needs to be explored holisti-
cally [8]. Early works adopted hand-made image feature rep-
resentation before advances in deep learning [32]–[35], re-
cent works leverage CNNs to learn image embeddings which
continue to demonstrate a good descriptive representation of
image features in computer vision [12], [21]. [10] worked
on geolocating panoramic images on a 2-D cartographic
map based on learning a low-dimensional embedded space.
[36] proposed a model for learning image representations
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that integrate context-aware feature reweighting to focus on
regions that positively contribute to geolocation effectively.
Although these works achieve good results, it is believed that
the conglomeration of their approaches with other features,
such as image colour, will yield better performances.

Image Colour Descriptor: Considerable work has been
done in designing and applying efficient colour descriptors,
among which are colour histograms and dominant colour. A
colour histogram is one of the most commonly used colour
descriptors that characterise the colour distribution in an im-
age, while the dominant colour descriptor gives the distribu-
tion of the salient colours in the image using algorithms such
as clustering and median cut quantization [30], [37]–[39].
[37] presented colour difference histograms, which count the
perceptually uniform colour difference between two points
under different backgrounds with regard to colours and edge
orientations for image retrieval. [39] proposed an algorithm
that used the peaks in 3D histograms of colours to segment
a colour image. [40] extended this algorithm and used the
colour histogram for multiband image segmentation.
Dominant colour extraction and analysis is another com-
monly adopted method in colour-based image retrieval sys-
tems. Although this has some shortcomings, especially for
object-based image retrieval, this has been widely used in
well-defined problems [41], [42]. [43] extracted image dom-
inant colour features based on region growth, while [44] ex-
tracted dynamic image dominant colour using the centroid of
partitions in the image, and [45] extracted prominent colours
from small image regions as dominant colours. All of these
works achieved good results, but emphasised integration with
other image features that are learnt on a global scale, since
dominant colours and colour histograms are local to the
image.

In summary, the major research gap in related work lies
within the advancement in feature engineering to enrich im-
age embeddings with other features, such as colour patterns,
to capture more latent information that could improve the
accuracy of geolocation models.

III. METHODS
A. PROBLEM DEFINITION

The objective of this work is to improve the representation
of image features for the augmentation of discriminative
attributes, thus improving performance in classification and
information retrieval models, particularly within the domain
of indoor scene geolocation. Given a finite number of images
n, each having latent and inherent features, the objective is to
enhance the embedding of the image with the integration of
colour features.

Let Xi be input image, i = 1,2,...,n, where n is the total
number of images.
Let Ei represent Xi embedding of size 128 for the i th image,
Let CS

i represent the colour feature vector for Xi in a given
colour space S, such that S∈{RGB,HSV }.
The combined feature representation Fi can be defined as the

concatenation of the image embedding Ei with the colour
feature vector Ci

S :

Fi = [Ei||CS
i ] (1)

where || denotes concatenation
Therefore, geolocation model M can use classification with
deep learning or information retrieval with deep metric learn-
ing model as a function of Ei or Fi:

M(E)orM(F) (2)

B. HYPOTHESES
Having the embedding E with a constant size of 128 and
a colour feature vector size varying with N for both colour
feature extraction approaches in defined colour spaces, the
following hypotheses can be:

• Hypothesis 1: The model performance on colour fea-
tures improved embedding surpasses the performance
on using embedding alone across both classification and
deep metric learning.

M(F) ≥ M(E) (3)

• Hypothesis 2: The proportions of colour features in the
fused features influence the convergence rate of models
during training, impacting their ability to learn and
generalise effectively.

• Hypothesis 3: A saturation point k exists wherein addi-
tional colour features, beyond k do not notably improve
model performance, indicating an optimal balance be-
tween feature enhancement and model effectiveness.

M(Fik) ≈ M(Fik+1) (4)

for all i with k being the saturation point

C. EMBEDDING
With a pretrained CNN, specifically EfficientNet_B0,
as the backbone model of the proposed architecture, the
semantic and textural features of the image were learnt and
the embedding layer (a fully connected layer) was used to
learn the embedding vector E with a constant size of 128,
serving as a condensed representation of the features of the
image.
EfficientNet_B0 is the baseline model in the Ef-

ficientNet architecture family, characterised by its balance
between model size and performance [46]. It consists of
multiple blocks with separable convolutions in-depth, along
with efficient scaling techniques such as compound scaling
and model architecture search (MNAS). This serves as a
sufficient baseline for the proposed architecture to observe
the effect of the colour features on the image-embedding
model performance.

D. COLOUR FEATURE EXTRACTION
This involves two key approaches: extracting N-dominant
colour palettes and computing N-bin colour histograms. As
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FIGURE 1. Illustration of the proposed model architecture to improve image embedding with colour features. The colour feature extractor uses colour palettes and
colour histograms to compute a normalised feature vector that is concatenated with the image embedding extracted using Efficient Net as the backbone model.

seen in Table 1, the value N, representing the palette or bin
size, is calculated based on the proportion ‘P’ of colour
features relative to the fused embedding colour features.
Mathematically,

P =
TotalColourFeatures

TotalColourFeatures+ Embedding
× 100 (5)

P =
3N

3N + E
× 100 (6)

Therefore:

N =
P × E

3(100− P )
(7)

Where:

• N: Palette or Bin size
• P: Proportion of colour features (as a percentage).
• E: Embedding size
• ‘3’: Number of colour channels in RGB or HSV.
• ‘100’: percentage).

Equation 7, derived from the ratio of colour features to the
total fused feature size, ensures that a specific proportion P
of colour features is incorporated in the experiments.

1) N-Dominant Colour Palette
An N-dominant colour palette was extracted from each
input image. This involved identifying a number of the
most prominent colours present in the image, specifically
achieved through median-cut colour quantisation. Each ex-
tracted colour in the palette was then converted to a specific
colour space to obtain the colour values as a vector. The
number of dominant colours i.e N and the colour space
S were parameterized such that N ∈ {5, 11, 18, 28, 43,
64, 100} and S ∈{RGB,HSV } to observe the effect of
colour feature vector size on the constant embedding size of
128. Subsequently, the outputted colour feature vectors were
normalised to ensure consistency and uniformity with image
embedding fusion.

2) N-Bin Colour Histogram
In parallel with N-dominant colour palette extraction, the
colour histogram was computed for each input image within
the chosen colour spaces. The colour histogram captures the
frequency distribution of the colours in the image, divided
into a number of bins (N-bin colour histogram) such that N ∈
{5, 11, 18, 28, 43, 64, 100}. Following the computation of the
colour histogram, the resulting colour histogram vector was
normalised to maintain uniformity and ensure consistency in

4 VOLUME 13, 2025



Bamigbade et al.: Improving Image Embeddings with Colour Features in Indoor Scene Geolocation

the fusion with the image embedding.

3) Colour Space and Features Fusion
Experiments were performed in two commonly employed
colour spaces: RGB (Red, Green, Blue) and HSV (Hue, Sat-
uration, Value). Each colour space offers unique advantages
and insight into the colour characteristics of the input images.
The RGB colour space represents colours as combinations of
red, green and blue primary colours as shown in the upper
row of Fig. 2. The HSV colour space represents colours
based on their perceptual attributes: hue, saturation, and value
shown in the lower row of Fig. 2. These two colour spaces
were selected because of their complementary advantages:
RGB aligns with how images are stored and processed in
most computer vision pipelines, while HSV separates chro-
matic content from intensity, offering perceptual benefits that
make it more robust to lighting variations, particularly useful
in indoor scene analysis.

Having extracted the image colour features with different
vector sizes depending on the value of N, the image embed-
ding and the colour vector were fused as the final representa-
tion of the input image features. This fusion was performed
continuously for every batch of data during model training
and evaluation, as the model learns to better represent image
embedding for every iteration with the colour features in
consideration. Among several ways of achieving this feature
fusion, concatenation was used because of its preservation of
individual features, flexibility, simplicity, and compatibility.

E. GEOLOCATION MODELS
As shown in Fig. 1, the final building block of the proposed
architecture is the geolocation model. The application of two
distinct computational approaches to this task is explored.
Firstly, classification with deep learning and, secondly, deep
metric learning. Both models are set up to process the fused
features, which combine colour and image embedding, to
enhance the predictive accuracy and robustness of the geolo-
cation system.

1) Classification Loss and Optimisation
The cross-entropy loss 8 was used together with Adam
(Adaptive Moment Estimation) optimiser for the classifi-
cation approach. This loss function allowed measuring the
disparity between the predicted probabilities and the actual
geolocation labels, guiding the model toward more accurate
predictions. To assign an image to one of several geolocation
classes, cross-entropy loss is defined as:

L =
1

N

N∑
i=1

C∑
C=1

yi,c log(ŷi,c ) (8)

Where:

• N is the total number of images in the dataset or batch.
• C represents the total number of classes. In this case,

unique geolocation categories).

• y i,c is the true label for image i, encoded as a one-hot
vector (1 if the image belongs to class c, otherwise 0).

• ŷ i,c denotes the predicted probability that the image i
belongs to class c, as produced by the softmax output of
the model.

The logarithm penalises incorrect predictions by assigning
higher loss values to lower predicted probabilities for the true
class. Multiplying by the true label y i,c ensures that only the
loss corresponding to the actual class is considered, effec-
tively ignoring other classes in the summation. Averaging of
overall samples ( 1

N ) provides a mean loss value, facilitating
consistent gradient updates during model training [47]

The Adam optimiser, introduced by [48], combines the ad-
vantages of two popular optimisers: AdaGrad and RMSProp.
It is known for its efficiency in handling sparse gradients
and acceleration of convergence. This was used to update
the model parameters. Adam calculates adaptive learning
rates for each parameter using estimates of the first moment
(mean) and the second moment (uncentered variance) of the
gradients. The update rule for a parameter θt is expressed as:

θt = θt−1 − η
m̂t√
v̂t + ϵ

(9)

Where:
• θt: Parameter at time step t being updated
• θt−1: Previous parameter value.
• η: Learning rate
• m̂t: Bias-corrected first moment estimate
• v̂t: Bias-corrected second moment estimate
• ϵ: Small constant to prevent division by zero, ensuring

numerical stability.

2) Deep Metric Learning Loss and Optimisation
The Triplet Margin Loss function 10 was used to learn
a feature space where distances directly correspond to the
similarity of geolocation. This loss function facilitated the
optimisation process by penalising the model for incorrect
pairwise distance relationships between anchor, positive, and
negative samples within triplets. Additionally, to enhance the
effectiveness of triplet selection, a combination of Triplet
Margin Miner and cosine similarity was used to mine in-
formative triplets during training, creating semihard triplets.
This approach ensured that the model learned from the most
relevant and informative sample triplets, improving the per-
formance of the capture of subtle distinctions in geolocation
similarities.

L =

N∑
i=1

max
(
0, d(f(xa

i ), f(x
p
i ))− d(f(xa

i ), f(x
n
i )) + α

)
(10)

Where:
• L: The triplet loss.
• N : The number of triplets in the batch.
• xa

i , x
p
i , x

n
i : Anchor, positive, and negative samples, re-

spectively.
• f(x): The embedding function.
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FIGURE 2. Example of indoor images in the selected colour spaces. On the left are the images in RGB and HSV colour spaces, on the right are the images in each
channel.

FIGURE 3. Example of extracted colour palette with varying palette sizes from Hotels-50K dataset.

• d(u, v): The distance metric (cosine similarity).
• α: The margin parameter, which ensures that positive

pairs are closer than negative pairs by at least α.

F. EVALUATION METRICS

The primary metric used to assess the performance of the
models was the mean average precision at 5 (mAP@5).
This metric calculates the average precision of the top five
predictions, providing a robust measure of the model’s ability
to rank true locations highly among the top results. mAP@5
is defined as:

mAP@5 =
1

U

U∑
u=1

min(t,5)∑
k=1

P (k)× rel(k) (11)

where U is the number of images, P(k) is the precision at
cutoff k, t is the number of predictions per image, and rel(k)
is an indicator function equalling 1 if the item at rank k is a
relevant correct label, zero otherwise [49].

Furthermore, Precision at 1 was used, which is the closest
equivalent of classification accuracy, to evaluate the imme-
diate relevance of the top prediction. Precision at 1 directly
measures the accuracy of the model in identifying the most
likely geolocation as the top result, offering insights into the
precision of the model with the most confident prediction.
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FIGURE 4. Example of the computed colour histogram from the Hotels-50K dataset.

TABLE 1. N-Dominant and colour Histogram features extraction and
concatenation with embedding. Where N is the palette and bin sizes, C is the
resulting colour feature vector size, E is the embedding size, and F is the fused
features size.

Colour Space N C size E size F size Proportion P(%)

RGB,HSV 5 15 128 143 10
RGB,HSV 11 33 128 161 20
RGB,HSV 18 54 128 182 30
RGB,HSV 28 84 128 212 40
RGB,HSV 48 144 128 272 50
RGB,HSV 64 192 128 320 60
RGB,HSV 100 300 128 428 70

IV. EXPERIMENTS
A. DATASET
The experiments used the 2022 Hotels-50K dataset [49]
created to combat human trafficking. A validation set con-
taining images of hotels with more than one image was
created. To ensure consistency in image dimensions and
reduce computational complexity, each image was resized to
256 by 256 pixels. Furthermore, occlusion files associated
with each hotel class were excluded to maintain data integrity
and minimise noise in colour features. This precautionary
measure was designed to prevent noise due to mask colour
and ensure the reliability of the colour feature extraction.

B. EXPERIMENTAL SETUP
In the experimental setup, two key configurations were com-
pared: classification and deep metric learning. These models
used embedding alone as a baseline, and the models lever-
aged concatenated features for enhanced performance. This
setup served as a reference point to evaluate the effective-
ness of incorporating additional features. In the experimental
variation, both the classification and the deep metric learning
models used concatenated features, combining the embed-
ding of images with the features of the colours. This con-
figuration aimed to explore the impact of integrating colour
information on model performance. To benchmark the work,
the approach and configuration used in the original Hotels-
50K paper [16] for deep metric learning were reproduced.

A neural network was trained using triplet loss with batch
hard mining, a miner that samples the hardest positive and
hardest negative triplets for each anchor [15]. The classi-
fication approach was benchmarked against the pretrained
“EfficientNet B4”. Both models and configurations were
trained and evaluated with the Hotels-50K dataset.

1) Parameters and Configuration
For each of the colour feature extraction methods with N∈{5,
11, 18, 28, 43, 64, 100}, colour features were extracted in the
selected colour spaces, as shown in Table 1. C and E sizes
are the colour vector and embedding sizes, respectively, with
F being the concatenated features size. The proportion is a
measure of the colour vector size compared to the embedding
size in the concatenated features. With a batch size of 32,
models were trained using 20 epochs with an early stopping
set to 5 and a learning rate of 0.001.

C. IMPLEMENTATION DETAILS
Pylette [50], a colour palette extractor written in Python, was
used with the median cut colour quantisation algorithm to
extract N-Dominants colours in all the images in order of
luminance, with an example shown in Figure 3. Also, with
OpenCV [51], the colour histogram was calculated for each
image as shown in Figure 4. All colour features were ex-
tracted before the modelling stage for smooth integration via
late fusion during training and validation to reduce the overall
computational time. Geolocation models were implemented
using PyTorch [52] for classification and PyTorch Metric
Learning [53] for the deep metric learning approach. All
experiments involving computational graphs were conducted
using the Metal Performance Shaders (MPS) on an Apple M2
device as the back-end for PyTorch.

D. EVALUATION AND RESULTS
1) Accuracy convergence and loss decay
Classification with deep learning primarily emphasises accu-
racy during training to minimise classification errors, while
deep metric learning models focus on optimising embedding
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FIGURE 5. Analysis of model accuracy convergence and loss decay for the early epochs during training on all features. At the top is classification model accuracy
convergence, and below is DML model loss decay

TABLE 2. N-Dominant Colours with Embedding Results on Testing Set

Classification DML

Colour Space F size Proportion(%) Accuracy mAP@5 P@1 mAP@5

- 128 0 0.252 0.488 0.069 0.258

RGB 143 10 0.243 0.505 0.069 0.237
RGB 161 20 0.244 0.482 0.056 0.210
RGB 182 30 0.229 0.478 0.055 0.193
RGB 212 40 0.222 0.480 0.040 0.165
RGB 272 50 0.245 0.473 0.031 0.138
RGB 320 60 0.236 0.454 0.038 0.142
RGB 428 70 0.220 0.439 0.030 0.121

HSV 143 10 0.239 0.479 0.063 0.247
HSV 161 20 0.239 0.482 0.071 0.226
HSV 182 30 0.230 0.496 0.063 0.222
HSV 212 40 0.277 0.508 0.058 0.206
HSV 272 50 0.249 0.492 0.047 0.172
HSV 320 60 0.256 0.493 0.038 0.154
HSV 428 70 0.247 0.498 0.044 0.150

loss to learn feature representations that facilitate similarity-
based tasks. Convergence in both model accuracy and loss
decay was observed during training epochs, as shown in
Figure 5. Across all experiments, there were minimal dis-
crepancies in the classification accuracy during the early
epochs. However, as training progressed, noticeable differ-
ences in convergence behaviours emerged, demonstrating the
effect of the proportion of colour features on the embedding
representation.

Significant fluctuations were observed in the decay of deep

TABLE 3. Colour Histogram with Embedding Results on Testing Set

Classification DML

Colour Space F size Proportion(%) Accuracy mAP@5 P@1 mAP@5

- 128 0 0.252 0.488 0.069 0.258

RGB 143 10 0.264 0.495 0.053 0.232
RGB 161 20 0.254 0.489 0.038 0.200
RGB 182 30 0.252 0.502 0.036 0.200
RGB 212 40 0.270 0.496 0.037 0.201
RGB 272 50 0.255 0.515 0.045 0.220
RGB 320 60 0.264 0.512 0.034 0.190
RGB 428 70 0.255 0.525 0.034 0.191

HSV 143 10 0.233 0.482 0.052 0.248
HSV 161 20 0.256 0.477 0.060 0.268
HSV 182 30 0.254 0.499 0.047 0.236
HSV 212 40 0.254 0.505 0.054 0.244
HSV 272 50 0.282 0.531 0.041 0.214
HSV 320 60 0.278 0.521 0.047 0.230
HSV 428 70 0.278 0.521 0.046 0.226

metric learning loss, especially with N-dominant colours. i.e.,
There is no discrete pattern in the DML training loss on
the N-dominant colour-improved embedding compared with
the colour histogram features. These fluctuations indicate
that the embedding space holds more latent and sensitive
information, and the palette sizes are more sensitive to the
DML model than the bin sizes. This makes it difficult for
the loss to follow a smoother path. It can be seen that the
addition of colour histogram features to the image embed-
ding increases the loss decay duration during DML model
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training, as the loss function computations are element-wise
in the embedding space.

2) N-Dominant Colour Palette
• Classification: As shown in Table 2, classification

accuracy and mAP@5 on the N-dominant colour
palette improved embedding (specifically in the HSV
colourspace) and were higher than those achieved with
embedding alone. This result validates hypothesis 1,
indicating that the fusion of N-dominant colour features
with embedding in the right proportion improves the
performance of the model.

• DML: Using DML with N-dominant colour fused fea-
tures also demonstrated superior performance with P@1
and mAP@5 in the HSV colourspace compared to using
embedding alone. This also indicates that the incorpora-
tion of colour features in image embedding representa-
tion enhances the model’s ability to capture descriptive
features, thereby improving the retrieved geolocation
ranking.

• N-Dominant Colour Palette Saturation Point K: In
the classification approach, both the P@1 and mAP@5
show unique characteristics at points of inflection (40%)
in RGB and HSV colour spaces, as shown in Figure 6. In
the HSV colourspace, a minimal at 10% and a maximal
at 40% were observed for the mAP@5. In the RGB
space, 40% shows local minimal for P@1 and local
maximal for mAP@5.
With the DML approach, there is a direct correlation be-
tween the P@1 scores and the proportion between both
colour spaces, but this is not consistent with mAP@5.
In both colour spaces, the saturation point is found to
be between 10% and 20% after which a downward
trend in model performance was observed. This indi-
cates that while these colour features can improve the
performance of the model, only a small proportion is
needed to avoid noise features in the embedding space.

3) N-Bin Colour Histogram
• Classification: The inclusion of colour histogram fea-

tures specifically in the HSV colourspace significantly
improved the embedding performance in both evalua-
tion metrics, surpassing the use of embedding alone,
as shown in Table 3. Models in the RGB colour space
were found to outperform the base embedding model,
which shows that these colour features contribute to the
model’s ability to identify the right class of the input
image.

• DML: With the DML, the model performance on colour
histogram fused embedding is more pronounced with
the P@1 than the mAP@5. This indicates that while
colour histogram features enhance the model’s ability
to capture fine-grained geolocation similarities in some
cases, their impact may vary depending on the evalua-
tion metric used.

• N-Bin colour Histogram Saturation Point K: For

TABLE 4. Comparison of the proposed method using 40% and 20% colour
features fusion proportion for Classification and DML respectively with
Hotels-50K experiments configuration that used Efficient_B4

Classification DML

Approach Colour Space Accuracy mAP@5 P@1 mAP@5

Original Hotels-50K (Efficient_B4) - 0.208 0.419 0.015 0.088

Dominant colour+Efficient_B4 RGB 0.231 0.433 0.020 0.125
HSV 0.252 0.442 0.019 0.124

Colour Histogram+Efficient_B4 RGB 0.248 0.436 0.023 0.142
HSV 0.260 0.451 0.024 0.145

classification, the histogram bin size proportion has a
slight direct correlation with P@1 and mAP@5 up to
50% where the global maximal is observed as shown
in Figure 6. Between 10% and 20%, the DML model
with a colour histogram is seen to be saturated, just as in
the case of the N-dominant colour features. This further
validates that the embedding space can handle only
minimal alteration before resulting in noisy features.
With the saturation point found for both modelling ap-
proaches and hypotheses being true, comparison models
were built using 40% and 20% colour features fusion
proportion for classification and DML respectively. The
results were compared with the Hotels-50K experiments
configuration, which used Efficient_B4, as shown in
Table 4. The proposed approach showed improved per-
formance in both RGB and HSV colour spaces. To
increase the chances of geolocating hotels of interest, an
additional experiment was performed with k=20 (most
relevant results for a given query image from a search
space), further increasing the classification accuracy by
17% and a better chance of retrieving the hotel of
interest in the dataset.

V. CONCLUSION
This research demonstrates that integrating colour features
into image embeddings significantly enhances model per-
formance, surpassing the effectiveness of embeddings alone.
Specifically, using colour information markedly improves the
descriptive power of image features, validating one of the
hypotheses. The experiments reveal that models leveraging
the HSV colour space consistently outperformed those using
the RGB space across both the N-dominant colour palette and
colour histogram extraction methods.

The optimal saturation points were identified for colour
feature integration: 40 to 50 percent for classification models
and 10 to 20 percent for deep metric learning approaches.
Balancing these proportions is crucial for maximising model
performance. Although the integration of colour features did
not significantly impact the convergence rate of classification
accuracy, it introduced fluctuations in the loss decay for deep
metric learning models. This reflects the complex learning
process involved with this approach and the sensitivity of the
embedding space to the colour feature vectors.

Although the integration of colour-based features intro-
duces additional computational overhead, the resulting per-
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FIGURE 6. Effect of colour feature proportion on model scores in RGB and HSV colour spaces. On the left side is the classification model performance, and on the
right side is the DML model performance

formance gains, particularly in indoor scene geolocation,
justify this trade-off. The enhanced discriminative power
provided by colour information, especially in visually sim-
ilar environments, leads to improved model accuracy and
retrieval effectiveness. Importantly, the extraction of colour
features, such as dominant palettes and histograms, remains
relatively lightweight compared to deep neural operations,
making the approach feasible for deployment. This balance
between performance and computational efficiency high-
lights the practical value of colour-enhanced embeddings in
real-world geolocation systems.

The limitations of this work set the foundation for future
research directions, such as exploring more sophisticated
ways to combine colour features with image embeddings.
This could include attention mechanisms or other fusion
techniques that can further improve model performance. Fur-
thermore, analyses that extend the model training to other
colour spaces, assessing the trade-off of each, and deter-
mining if performance is better than RGB and HSV for
geolocation and other use cases can be explored. Another
avenue of research includes developing algorithms that can
dynamically balance the contribution of colour features and
embedding features during training, in line with real-time
performance metrics. This work could also be extended to
other datasets to evaluate the effectiveness of the proposed
architecture in solving tasks beyond indoor geolocation. Fur-
thermore, the approach has potential for real-world appli-
cations such as video-based indoor navigation, augmented
reality, and mobile robotics, where accurate and efficient
scene recognition is critical. By adapting colour-enhanced
embeddings for real-time or sequential input, this method
could contribute to improved localisation and environmental
understanding in a variety of dynamic indoor settings.
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