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ABSTRACT Network forensics focuses on the identification and investigation of internal and external
network attacks, the reverse engineering of network protocols, and the uninstrumented investigation of
networked devices. It lies at the intersection of digital forensics, incident response and network security.
Network attacks exploit software and hardware vulnerabilities and communication protocols. The scope
of a network forensic investigation can range from Internet-wide down to a single device’s network traffic.
Network analysis tools (NATs) aid security professionals and law enforcement in the capturing, identification
and analysis of network traffic. However, in most instances, the sheer volume of data to be analyzed
is enormous and, despite some built-in NAT automation, the investigation of network traffic is often an
arduous process. Furthermore, significant expert time remains wasted in the investigation of a high frequency
of false positive alerting from automated systems. To address this globally impacting problem, artificial
intelligence based approaches are becoming increasingly employed to automatically detect attacks and
increase network traffic classification accuracy. This paper provides a comprehensive survey of the state-
of-the-art in network forensics and the application of expert systems, machine learning, deep learning,
and ensemble/hybrid approaches to a range of application areas in the field. These include network traffic
analysis, intrusion detection systems, Internet-of-Things devices, cloud forensics, DNS tunneling, smart grid
forensics, and vehicle forensics. In addition, the current challenges and future research directions for each
of the aforementioned application areas is discussed.

INDEX TERMS Network forensics, artificial intelligence, cybersecurity, digital forensics.

I. INTRODUCTION
Recent advances in artificial intelligence (AI) have aided in
its adoption by a wide spectrum of organizations and tech-
nologies. The pervasiveness of AI can be seen in everyday
devices such as smartphones, automobiles, smartwatches,
and televisions [1], [2] as well as in various sectors such
as healthcare, manufacturing industries, logistics, finance,
entertainment, and smart cities [3], [4], [5], [6]. The area
of cybersecurity and digital forensics has also been a major
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adopter of AI technologies for the detection and analysis of
cybersecurity incidents.

The growth in cybercrime, along with the increasing rele-
vance of digital devices to ‘‘traditional’’ crime investigation,
has led to an increased demand for digital forensics. Digital
forensics involves the investigation of digital data and devices
in a manner that is legally acceptable in a court of law.
It includes the processes of identification, collection, verifi-
cation, analysis, interpretation, documentation, and presen-
tation of digital evidence [7], [8], [9]. According to Cisco’s
latest ‘‘Annual Internet Report’’, by the end of 2023, the
total number of network-connected devices will be 29.3 bil-
lion [10], and the average traffic volume handled by a system
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FIGURE 1. Network forensics process model (adapted from [16]).

will be approximately 50 GB per month [11]. In a multi-
layered security model, AI can assist in the securing, mon-
itoring and, when necessary, the investigation of a network.
Network investigation often goes hand-in-hand with issues
associated with big data [12]. Proactively monitoring secu-
rity events through technologies such as AI-based Intrusion
Detection Systems (IDS) can play a crucial role in the recov-
ery of critical data [13]. This makes the use of AI a natural fit
in assisting investigators in processing large volumes of data
to find the pieces relevant to an investigation.

Digital evidence can be acquired from several sources,
including locally on the device under investigation, in transit
on the network, and from connected cloud environments [14].
Filesystems provide access to low level device data and
deleted evidence. Operating systems record machine activity
into files (such as system, application and event logs). These
logs provide investigators with information on application use
and facilitate the inference of how the device has been used.
Network traffic can provide statistical, session, and alert data
to the investigator. Cloud environments can hold evidence
not stored locally on a machine, or shared data that can be
correlated across multiple devices [14], [15].

Network forensics is a fundamental branch of digital foren-
sics. The analysis of network traffic to investigate security
incidents, data breaches and security policy violations is
known as network forensics [17]. Network forensics evidence
can be collected when communication is intercepted at the
packet level. A process model for network forensic investiga-
tions can be seen in Figure 1. Network packets contain more
than simply the routing information necessary for communi-
cation, in some cases network packet streams can also be used
to recreate files that have been sent and received [18].

Network forensic systems are often used by organizations
during the course of a digital investigation [7]. The network
traffic data used in these systems can be collected in two
ways:

1) Catch it as you can – this is a proactive approach where
network traffic is continuously monitored and analysis
is performed on-the-fly. This option is computationally
intensive.

2) Stop, look, and listen – this is a reactive approach where
following the detection of an attack, network traffic is
captured for subsequent offline analysis. This option
requires a significantly smaller memory footprint.

Network forensics enables self-protecting systems to ana-
lyze and comprehend the factors and effects of an unknown,
previously encountered attack. In order to improve the per-
formance of network forensic classifications, the monitor-
ing/capturing system must keep a record of all traffic that
passes through the network [19]. Examples of the most com-
monly encountered attacks resulting in a network compro-
mise are botnets, buffer overflow attacks, business email
compromise, cross-site scripting, cryptojacking, distributed
denial of service (DDoS), DNS tunneling, Internet worms,
man-in-the-middle, phishing, ransomware, and SQL injec-
tion. Further information on these various types of attacks and
their classifications is discussed in several survey papers [20],
[21] and the open web application security project (OWASP)
maintains a list of the most prevalent web application
exploits [22].

The paper is organized into 3 primary sections. The
datasets publicly available for network forensics are pre-
sented in Section II. Section III provides an overview of
the state-of-the-art of existing AI applications in network
forensics. Section IV summarizes the current challenges and
potential future directions in network forensics.

A. METHODOLOGY
This work employed an extensive combination of four bib-
liographic approaches to undertake state-of-the-art analysis
for each of the phases of the study presented in this work:
1) The Snowball technique [23] to find the most relevant
sources, 2) Pearl Growing [24] to capitalize on significant
research gatherings, 3) Citation Searching [25] to locate fur-
ther articles that cite popular pathways, and 4) PRISMA [26]
to limit the number of publications to the most relevant for
the selected topic. Highly cited publications were selected for
inclusion in this paper as they outlined influential strategies.
However, it was acknowledged that this concentration may
lead to the omission ofmajor new and developing approaches,
thus recently published works were also included.

B. CONTRIBUTION
This paper is expected to serve researchers in the digital
forensics and artificial intelligence communities to appre-
ciate the state-of-the-art and the current challenges in net-
work forensics. It is anticipated that this work will also
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facilitate researchers to further explore effective and efficient
AI approaches to solve these emerging challenges.

This paper’s primary contribution is a comprehensive
survey of AI approaches for network forensics. It encom-
passes expert systems, deep learning (DL), ensemble learn-
ing, and hybrid learning. This can be used by network
forensic researchers and practitioners to identify the most
recent applications of AI in domains that employ network
forensics, including IDS, vehicular networks, and smart
grids. This paper will aid researchers to identify trending AI
approaches adopted by researchers for network forensics with
reference to time. Furthermore, this work provides an outline
of current network forensic challenges and the future scope
of research.

II. DATASETS FOR NETWORK FORENSICS
The data required by expert analysts varies greatly based
on the task they are focusing on. High-quality, sufficiently
sized data is always a requirement; whether it is a library of
surveillance videos, diagnostic devices, text, financial data,
or network traffic data. High-quality from a computational
perspective also necessitates that it is adequately labeled,
well-organized, and machine-readable. However, depending
on the approaches being utilized, they will require varying
amounts of data.

To utilize the maximum benefit of AI in any domain, the
availability of public datasets is often the starting point – as
AI model training and their accuracy highly depend upon
realistic datasets [27]. Table 1, adapted from [28], shows
publicly available datasets utilized for network forensics and
are discussed in further detail below.

1) CSE-CIC-IDS2018 DATASET
The CSE-CIC-IDS2018 [34] dataset was introduced by
Canada’s Communications Security Establishment (CSE)
and the Canadian Institute for Cybersecurity (CIC) for IDS
in 2018. The 2018 dataset is much larger when compared
to CICIDS-2017 dataset. Network traffic was collected for
10 days to create a dataset of 16,233,002 packets. 17% of the
data contains attack traffic including DDoS (7.786%), DoS
(4.031%), brute-force (2.347%), botnet (1.763%), infiltration
(0.997%) andweb attacks (0.006%). An extensive analysis on
the dataset was done by Leevy and Khoshgoftaar [72].

2) CICIDS-2017 DATASET
This dataset [39], provided by the Canadian Institute of
Cybersecurity, comprises information recorded from Mon-
day, July 3, 2017, until Friday, July 7, 2017, and is stored in
eight files. It incorporates sophisticated attacks such as brute-
force SSH, DoS, Heartbleed, web attacks, infiltration, botnet,
DDoS, and brute-force FTP. CICIDS-2017meets all the char-
acteristics of real-world attacks. The CICFlowMeter utility
was used to extract 83 network flow characteristics from
produced network traffic, consisting of 15 distinct classes
with 2,830,540 distinct instances in total. Furthermore, the
CICIDS-2017 dataset isolates the subjective behavior of

25 users depending on protocols like FTP and HTTPS. How-
ever, class imbalance is one of the significant downsides
with this. An extensive analysis of CICIDS-2017 is presented
by Sharafaldin et al. [73].

3) BOT-IoT DATASET
This dataset contains 73,370,443 instances, including a large
number of attack categories: DoS, DDoS, reconnaissance (OS
fingerprinting, service scanning), and information theft (data
exfiltration, keylogging). Koroniotis et al. [71] provides an
overview of the Bot-IoT dataset, which contains 29 features.
This provides novelty in the context of IoT when compared
to earlier datasets. To replicate the network behavior of Inter-
net of Things (IoT) devices, the researchers used the Argus
security tool. The MQTT protocol, which is quite popular in
IoT, is used to connect machine-to-machine communications.
The testing platform is deployed based on five different IoT
scenarios.

4) TON_IoT DATASET
TON_IoT [69] is one of the most recent datasets cre-
ated by UNSW Canberra IoT Labs and their Cyber Range
specifically for IoT networks. A medium-scale IoT net-
work provided a heterogeneous dataset. The primary goal of
TON_IoT is telemetry data and characteristics of industrial
IoT (IIoT)/IoT services. The label feature of TON_IoT spec-
ifies whether an observation is normal or malicious, while the
type feature identifies the attack subclasses for multi-class
classification issues. Scanning, data injection, DoS, DDoS,
ransomware, backdoor, password cracking attack, cross-site
scripting, and meet-in-the-middle are among the captured
attacks.

5) CIC-DDoS2019 DATASET
The CIC-DDoS2019 dataset [29] is the most recently con-
structed dataset released by the Canada Cyber Security Insti-
tute in 2019. The information was collected over two days
to construct an appropriate dataset. In total, it consists of
50,063,112 instances, where 50,006,249 instances are DDoS
attacks, along with 80 features. An adequate test context
was built with limitations of earlier datasets in mind. CIC-
DDoS2019 includes the results of network traffic analysis
(NTA) in addition to regular and recent DDoS attacks that are
similar to genuine data (PCAP). CICFlowMeter-V3 is used to
analyze network traffic since it has labeled traffic. There are
several types of DDoS attack, such as port-map, NetBIOS,
LDAP, MSSQL, and so on.

6) CIDDS-001 DATASET
CIDDS-001, a flow-based dataset, was released in 2017 by
Ring et al. [74]. The data was collected through OpenStack
and external servers for four weeks. It is quite realistic since
it better reflects corporation cycles and working hours. The
dataset consists of 14 features, out of which 10 features
are from Netflow and the other 4, namely class, AttackID,
AttackType, and AttackDescription, are added during the
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TABLE 1. Publicly available datasets relevant to network forensics.

labeling process. It encompasses both benign and malicious
traffic, including ping scans, port scans, brute-force, andDoS.
CIDDS-001 has 146,500 instances, with the normal class
representing 91.6% of network traffic.

7) UNSW-NB15 DATASET
In 2015, the Australian Center for Cyber Security (ACCS)
used tools such as IXIA PerfectStorm, Tcpdump, Argus, and
Bro-IDS to create the UNSW-NB15 dataset [53]. The IXIA
PerfectStorm tool, which is used to generate both normal
and anomalous traffic, is constructed on three virtual servers.
ACCS collected data for 15 and 16 hours that consisted of
nine different attack categories, including fuzzers, analysis,
backdoors, DoS, exploits, generic, reconnaissance, shellcode,
and worms. The collected data is based on different protocol
types such as TCP, UDP, ICMP, etc. The gathered data was
separated into 49 features.

8) ISCXIDS2012 DATASET
In 2012, the Information Security Centre of Excellence at
the University of New Brunswick prepared a dataset, namely
ISCXIDS2012 [40]. It was created through the use of a
systematic strategy to minimize validity concerns in existing
datasets. The complete dataset, 78.6 GB in size, consists of
2,450,324 network traffic packets with 20 features that span
seven days of network activity (i.e., normal and intrusion).
It consists of four different attack types, including brute-
force SSH, infiltrating, HTTPDoS, and DDoS. Intrusion data
represents around 2% of the entire dataset.

9) NSL-KDD DATASET
The NSL-KDD dataset is an enhanced version of the KDD
Cup 99 dataset [56] generated by Tavallaee et al. [76] in 2009.

The authors address the KDD Cup 99 dataset’s inherent
duplicate record concerns while simultaneously lowering the
level of complexity. The data collection contains 41 fea-
ture records. There are five main classes in it; one is a
normal class and the other four are attack classes, namely
DoS, probe, remote to local attack (R2L), and user to root
attack (U2R). The dataset consists of 125,973 instances
of the training dataset and 22,544 instances of the test
dataset.

10) KDD CUP 99 DATASET
In 1999, DARPA’s [60] tcpdump files were modified and
analyzed by University of California researchers to gener-
ate the KDD Cup 99 dataset [56]. The simulated attacks
are categorized into four groups, i.e., DoS, R2L, U2R, and
probing attacks. With KDD Cup 99, 41 features are divided
into three classes, i.e., basic features: extracted trough TCP/IP
connection; traffic features: further divide into two groups
namely same host and same services; and content features:
malicious behavior. KDD Cup 99’s training set had 22 attack
types, whereas the test data contained an additional 15 attack
types. Researchers have mostly used KDD Cup 99 for the
evaluation of intrusion detection models. This dataset was
critiqued by McHugh [77].

III. STATE OF THE ART
Most common implementations of AI are based on machine
learning (ML), deep learning, or ensemble learning. AI has
been posited as part of the solution to the ever-increasing
number of cases requiring expert digital forensic investiga-
tion [78]. This section reviews how a variety of AI techniques
have been applied to a selection of different applications of
network forensics.
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FIGURE 2. Network traffic analysis process (adapted from [75]).

A. NETWORK TRAFFIC ANALYSIS
Network traffic analysis (NTA) detects, identifies, and anal-
yses security threats and potential operational difficulties by
utilizing network communications and associated protocols.
NTA is a critical security method that moves threat hunt-
ing away from security perimeters and endpoints and onto
network flows. An overview of the NTA process is shown
in Figure 2. NTA employs a combination of ML, advanced
analytics, and rule-based detection to construct (or improve) a
baseline model of typical network activity and to send highly
contextualized warnings when anomalous patterns are found.
Increases in network traffic volumes have motivated several
studies on new NTA techniques.

The popularity of expert systems was at its peak in the
1990s due to their effectiveness in analyzing data about the
situation in a specific environment and drawing logical con-
clusions from them. Several studies from that time utilized
expert systems for NTA. Stern and Chemouil [79] used an
event-driven network simulator to model a management sys-
tem and utilized an expert system on a French long-distance
network by setting up different rules with some threshold
to detect and diagnose the events. Lindqvist and Porras [80]
discussed the efficacy of the Production Based Expert System
Toolset (P-BEST), which was used for decades to moni-
tor, control, and identify misuse. A library of runtime pro-
cedures (rule translator) and garbage collection algorithms
make up the P-BEST toolset. Due to its general-purpose
inference engine, P-BEST can be applied to various problem
domains, including analysis of traffic streams, detection of
TCP/IP layer attacks, and application layer attacks. Expert
systems provide significant benefits for analyzing firewall
rules and also support signature analysis of network traffic.
‘‘SEMACS’’, a real-time monitor and control system imple-
mented on the Universal Floor Device Controller (UFDC)
system by Dunning and Switlik [81] in 1988, which was
designed to detect problems before they become serious
issues and assist in corrective decision-making. It updates its
knowledge every 20 seconds to detect network hardware and
software issues.

In the late 1990s, fuzzy-based expert systems were utilized
for asynchronous transfer mode (ATM) networks [82]. These
were used to prevent network resources from overloading in a
scenario where the connection exceeds the negotiated traffic
parameters. Experiments show the effectiveness of the fuzzy
policer in terms of responsiveness and selectivity.

A significant change occurred after 2000 with the adoption
of ML models. A major reason behind this was the avail-
ability of datasets such as 1998 DARPA Intrusion Detection
Evaluation, KDD Cup 99, NSL-KDD, etc. Various different
statistical approaches, including linear and non-linear princi-
pal component analysis (PCA) and genetic algorithms (GA),
were used for dimensionality reduction. For ML algorithms,
dimensionality reduction is considered an essential step as it
helps to remove multicollinearity, thereby enhancing com-
prehension of ML model parameters and reducing model
training time. Various ML approaches, including but not lim-
ited to, Support Vector Machine (SVM), Decision Tree (DT),
Linear Regression (LR), Random Forest (RF), Naive Bayes
(NB), and K-Nearest Neighbors (k-NN), have been utilized to
address the NTA domain. Knapińska et al. [83] have recently
utilized ML to examine numerous time-series predictions for
traffic of multiple frame sizes to address modeling and pre-
diction of long term network traffic patterns. They explain the
acquired real network traffic statistics and investigate period-
icity and traffic type relationships. An extensive experiment
was performed for traffic prediction using Fourier transform
and ML-based prediction utilizing Multilayer Perceptron
(MLP) regressor by changing the parameters to increase the
prediction quality and time.

Millán [84] investigates how many time-series points from
a high-speed traffic network are necessary to properly predict
the Hurst exponent. The Hurst exponent is used to calculate
the long-term memory of a time series. The process involves
planning an experiment that employs time-series estimation
methods and then addresses the smallest number of points
necessary to produce reliable Hurst exponent estimations in
real-time. An experiment shows different behavior depending
upon time-series length, where Whittle’s estimator performs
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well for both short-term and long-term time series. Dong [85]
suggests a modified SVM technique called cost-sensitive
SVM (CS-SVM) that forecasts the kind of traffic generated
by an application to avoid the imbalance problem in network
traffic detection, which is a burden on the model’s perfor-
mance. CS-SVM uses an active learning, multi-class SVM
algorithm to dynamically allocate weight to applications. The
proposed model achieves 70% of the geometric mean and the
multi-class area under the curve (MAUC), both typically used
to evaluate the solution to the data imbalance problem.

The dramatic increase in the number of network-connected
devices together with increased network speeds results in
huge network traffic volumes, which encourages researchers
to deploy DL models and ensemble learning for NTA. Iden-
tifying useful information from encrypted traffic is a chal-
lenging task [15]. Lotfollahi et al. [86] introduced Deep
Packets, which is a DL-based traffic classification approach
to identify encrypted applications such as BitTorrent, Skype,
and others, and also distinguish traffic types such as FTP, P2P,
and others. Instead of inspecting packet content for keywords
or usage patterns, as deep packet inspection techniques do, the
methodology uses DL architecture to learn new features for
each application. The authors employed a one-dimensional
convolutional neural network (1D-CNN) and stacked autoen-
coders on network traffic for automated feature extraction and
classification to achieve both application identification and
traffic characterization in encrypted or unencrypted traffic.
Experimental results demonstrate that the proposed model
outperformed the general ML-based methods.

The adoption of wireless mesh networks is increasing due
to their adaptability, flexibility, and efficiency in terms of cost
and time. Contributing to traffic prediction problems formesh
networks, Mahajan et al. [87] proposes a unique architec-
ture based on CNN and long short-term memory (LSTM).
An experiment was performed on sensors that formed a
network, a mesh network. Extensive experiments show that
the proposed unique Convo-LSTMmodel provides improved
performance for network traffic prediction. Resource opti-
mized ML models are an essential requirement, especially
in IoT security. A recent study by Gandhi and Ribeiro [88]
examines the influence of network packet clustering on the
combination of performance metrics (accuracy, F1 score) and
system resources (CPU and memory) required by tradition-
ally used ML algorithms, including LR, RF, k-NN, SVM,
XGBoost, and Deep Neural Network (DNN) in the scope
of botnet detection in IoT networks. The paper concentrates
on the system resources used by these algorithms, rather
than optimizing ML algorithms for resource limitations or
application workloads.

A meta-learning approach can assist in reducing false
positive rates caused by non-malicious activity during the
attack detection phase. The attack detection system requires
meta-learning to integrate several classifiers and apply an
integration strategy to decrease false positives. Possebon
et al. [89] performed experiments to classify network traffic
using meta-learning approaches including voting, stacking,

bagging and boosting and to evaluate the results with con-
ventional models. The results demonstrate that bagging got
better scores when compared to other meta-learners in terms
of accuracy and false positives, whereas other meta-learners
yielded scores equivalent to non-meta algorithms, with no
discernible enhancements. Several surveys have been con-
ducted to summarize ML and DL approaches for NTA [75],
[90], [91], [92].

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
The characteristics of networks vary depending on their
architectures, equipment, scale, applications, and so on.
It creates significant challenges in which ML approaches
must be trained for every network independently. However,
ML-trained models may reduce their accuracy on differ-
ent network topologies. ML and DL are well known for
resolving complex problems, and both of them have been
utilized for NTA. One inadvertent benefit of AI-based NTA
approaches is that it can help reduce access to privileged
information [94]. The latest publicly available datasets, such
as CICIDS-2017 and CSE-CIC-IDS2018, are still vulnerable
to excessive imbalance problems [95], which can lead to low
accuracy and a high false-positive rate. A dataset’s files may
be combined to contain all the attack descriptions for analysis.
However, merging examples of each attack type expands
the dataset, resulting in higher computation and processing
time. Due to the vast utilization of internet-connected devices,
classifier analyzers must deal with an increase in volume and
transmission rates.

Multi-layer DL models, due to their complex architec-
ture, require a long processing time. To resolve this issue,
lightweight algorithms with low computing costs are sought
that can solve complex problems. The expanding trend of
data encryption and protocol tunneling introduces new obsta-
cles for security specialists. There is a distinct absence of
studies on fault management, and a significant proportion of
the examined publications employ DL for other objectives,
such as traffic flow categorization and forecasting. Tradi-
tional solutions for fault management, such as rule-based
systems and algorithmic approaches, have significant draw-
backs. On the one hand, where attackers may generate sophis-
ticated attacks or tricks to bypass systems to harming users
or organizations; on the other hand, security experts try to
improve the monitoring and analysis system continuously for
corrective action before any major incident.

B. INTRUSION DETECTION SYSTEMS
A network-based intrusion detection system (NIDS) is a
detection and prevention mechanism that monitors network
traffic for hostile and suspicious behavior. NIDS can help
traditional corporate systems and organizations strengthen
their security controls and secure their network environment.

To identify attacks, NIDS use a signature-based or
anomaly-based approach. Signature-based approaches
require a library of known attacks to compare network
traffic. Signature detection uses a rule-based system to
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FIGURE 3. The architecture of AI based IDS (adapted from [93]).

detect malicious activities by comparing the network traffic
against a library of known vulnerabilities. Anomaly-based
approaches have been developed using AI techniques to
detect abnormal behavior. The architecture of IDS based on
AI is shown in Figure 3.

Even the most secure systems may be abused by out-
siders who attempt to breach the network for a purpose,
or by insiders who abuse their privileges. To address insider
abuse and other challenges, Denning [96] introduced an
Intrusion Detection Expert System (IDES) that is based on
the principles of anomaly detection, which is not dependent
on any specific target system. IDES represents profiles for
describing the behavior of individuals from the perspective
of metrics and statistical models, and rules for learning about
such behavior from audit logs to identify aberrant activity.
The research focused on activity profiles based on subject
and object, along with metrics such as resources and time,
to generate low false alarms. Lunt et al. [97] enhanced the
work of [96] and proposed a solution to characterize the
behavior of subjects based on a combination of statistical and
expert-based approaches. Wisdom and Sense (W&S) [98] is
an anomaly detection system that generates rules automati-
cally using historical data. Its goals are to identify breaches,
harmful or erroneous user behavior, Trojan horses, and
infections.

However, W&S rule bases have a huge number of instan-
tiations, many of which are irrelevant. In the Wisdom part,
a heuristic is designed for dealing with categorical data and
adapting skewed, multi-modal continuous data to categorical
data. It works well on computer audit logs and developed
rules that are human-readable, allowing for the incorporation
of human and machine rule bases into a unified rule base.
It assigns grades, which is a measure of the historical accu-
racy of the rule. At Sense, the anomaly detection module cal-
culates the transaction score of the event and checks whether
it exceeds the set limit to detect anomalies. However, W&S
is not capable of detecting anomalies in real-time or may be
feasible with lower detection sensitivity. Signature-based IDS

offers a low false alarm rate, but are unable to detect new or
previously unseen attacks.

ML has been used to address the challenge of detect-
ing novel attacks. This was based on detecting unexpected
behavioral patterns on the network and alerting users to any
detected deviations from normal behavior. Publicly avail-
able datasets were used to evaluate ML algorithms. A major
difficulty in abuse detection is determining how to create
signatures that encompass all conceivable attacks in order
to avoid false negatives, as well as how to create signatures
that do not match non-intrusive actions in order to avoid
false positives. Though false negatives are usually regarded
as more dangerous, the setting of threshold levels is critical
to ensure that none of the aforementioned issues are exag-
gerated unnecessarily. To address the challenge of detecting
anomalies and misuses, Mukkamala et al. [99] developed two
IDSs by utilizing SVM and neural networks on the KDD99
dataset to train models with normal user activities and attack
patterns. The selection of the SVM model is based on scal-
ability and speed. SVM IDS was built based on 41 input
features that included both normal and attack classes. An IDS
based on a neural network was trained using MLP with
gradient descent, since it is computationally efficient and
produces a stable error gradient and convergence. To improve
the effectiveness and results of ML models, feature selection
was investigated while deploying ML for IDS. The feature
selection method determines which characteristics are more
discriminative than others. It has been demonstrated that both
neural networks and SVM generate quite accurate results.
SVM, on the other hand, can only conduct binary classifi-
cation, which is a severe disadvantage when the IDS requires
multiple-class identifications.

Many IDSs have low detection rates and high false alarm
rates due to the massive volume of network data and the
imbalanced distribution of regular and anomalous actions.
Ren et al. [100] proposed a data-optimized IDS solution to
handle the unbalanced distribution of normal and anoma-
lous behaviors. They deployed a hybrid data optimization
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method based on sampling and feature selection using mul-
tiple ML algorithms. For data sampling, Isolation Forest is
used, which is a tree-based outlier identification approach
with linear time complexity and strong precision that is
ideal for high-dimensional and large-scale data sets. For
feature selection, they used genetic algorithms. RF is used
for classification and for optimization of features and sam-
pling ratio. The model performed well, especially in detect-
ing anomalous behaviors with fewer records, such as DoS,
analysis, backdoors, and worms. However, there are still
enhancements that may be made, such as reducing the time
spent on data optimization and providing support for online
processing.

Recently, Chen et al. [101] also proposed an improved
RF-based model by employing ADAptive SYNthetic sam-
pling (ADASYN) to balance the dataset and applied it
to detect network attacks accurately and efficiently. They
merged eight different datasets into the CIC-IDS2017 dataset
in order to simulate benign data-flow and the latest com-
mon attacks. An experiment shows that the proposed model
has higher prediction performance, efficiency, and robustness
compared to the traditional ML algorithms. However, the
result shows that false positives are still one of the major
concerns. Modern-day network traffic requires an IDS with
optimal efficacy. Furthermore, false positives may need more
system resources and false negatives may render the entire
system inoperable. Thus, latency is one of the key evalu-
ation metrics along with accuracy to evaluate the perfor-
mance of an IDS because IDSs make predictions in real-time.
Seth et al. [102] proposed a time-efficient model focused
on latency that did not impact the performance of attack
detection. The feature selection phase was done through a
hybrid approach that includes RF and PCA. PCA is applied to
the selected essential features, and the implemented approach
reduces the prediction latency by reducing the complexity
of the model. The model was trained using the light gra-
dient boosting machine (LightGBM) algorithm, which is a
DT-based gradient boosting system that is fast, distributed,
and high-performance. The latest CIC-IDS-2018 dataset is
used in order to identify the vast majority of modern-day
attacks. An experiment compared the results of the proposed
models with five ML algorithms, namely RF, Extra Trees,
XGBoost, k-NN, and Histogram Gradient Boosting.

One way to handle the false positive problem in IDS
is to use the optimum number of features. Megantara and
Ahmad [103], [104] suggested a hybrid ML technique that
combines the feature selection and data reduction meth-
ods. It works by employing a feature significance DT-based
approach with recursive feature elimination to pick critical
and essential features, as well as the Local Outlier Factor
(LOF) method to discover outlier data. Experimental findings
reveal that the suggested technique detects R2L with higher
accuracy and maintains better precision for other attack
types than previous studies on the NSL-KDD dataset. As a
result, it performs more steadily than others. However, the
authors faced some challenges while comparing the result of

UNSW-NB15 with binary classes. There is still a lot of room
for improvement in terms of accuracy and efficiency.

Many researchers have used ML methods on the topic
of intrusion detection, such as DT, k-NN, SVM, and DNN,
and have obtained some preliminary results. Each algorithm
model may be superior in some aspects while being deficient
in others, and resolving such deficiency is one of the current
challenges. In addition, strengthening the detection ability of
small-scale samples is also a major concern. Tang et al. [105]
proposed an integrated learning solution to solve deficiencies
such as limited adaptability, latency in detection, inadequate
detection accuracy, and so on, in ML algorithms. It belongs
to ensemble learning to blend the benefits of different ML
algorithms and improve the detection rate. An experiment
was done on the NSL-KDD dataset using the deep-stacked
technique based on different algorithms. The undersampling
method is used to process the training samples of the dataset
in order to handle the unbalanced training samples problem to
avoid biases. The authors used cross-validation to determine
the hyperparameters and discovered that four models, DT,
k-NN, DNN, and RF have superior detection performance
and fulfil the demands of diverse classification impacts. The
deep stacking network increased its classification impact.

DL has been used for IDS in recent years, due to its
automatic feature generation and scalability. It has the ability
to extract better representations from data in order to develop
better models. On CIC-IDS2017, Sun et al. [107] used two
DL approaches, CNN and LSTM, to extract features and
categorize network data. CNNwas used to extract spatial fea-
tures, whereas LSTM was utilized to detect temporal infor-
mation. To overcome the class imbalance issue, the authors
further performedweight optimization on the training dataset.
1D-CNN is becoming increasingly popular in comparison
to other ML approaches due to its superior feature extrac-
tion capabilities. Azizjon et al. [108] employed 1D-CNN for
supervised learning on time-series data with 42 features by
serializing TCP/IP traffic in a predefined time period as an
invasion internet traffic model for the IDS. A max-pooling
layer deals with the CNN layer to optimize output size, fea-
ture count, and computational complexity. For both balanced
and imbalanced training datasets, the proposed 1D-CNN
performance is compared to SVM, RF, and the combined
architecture of 1D-CNN and LSTM. Extensive experiments
were carried out using the publicly available dataset UNSW-
NB15, and random over-sampling was applied to handle
the unbalanced data problem. Vinayakumar et al. [109] also
combined 1D-CNN with RNN, LSTM, and Gated Recurrent
Unit (GRU). The authors analyzed the impact of the number
of layers using different modeling architectures.

Yin et al. [110] proposed an RNN-based system to detect
both binary and multi-class intrusion. Exclusive experiments
were performed to evaluate the effect of neurons and learning
rate on the accuracy of the model. They used the NSL-KDD
dataset to create a map from 41 to 122-dimensional extracted
features by transforming non-numeric characteristics into
numeric values for preprocessing. The logarithmic scaling
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FIGURE 4. IoT forensics components (adapted from [106]).

and linear normalization approaches are then utilized to
bridge the gap between the maximum and minimum values
for certain features, enhancing accuracy. RNN-IDS beats the
traditional classification approach in binary and multi-class
classification on the NSL-KDD dataset.

DL has yielded excellent results, but requires large, cen-
tralized datasets for better performance of the model. The
centralized collection of sensitive network traffic data raises
concerns about privacy. There has also been a focus on
federated learning due to its ability to train across several
decentralized fog devices or servers. The server does not
gather data, but it can collect model parameters. A federated
learning-based NIDS is presented in [111] to address the
problems of insufficient NIDS datasets and privacy protec-
tion. The authors utilized GRU on the CIC-IDS2017 dataset
for experiments, and their results proved that the federated
learning approach achieves more accuracy as compared to
the traditional centralized training approach, and is capable
of providing privacy protection. Federated learning requires
more communication, but its performance is strikingly simi-
lar to that of centralized learning.

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
AI-based IDS is mostly performed using publicly available
datasets. However, there is no universal way to verify the
extent to which these datasets represent real-world network
traffic. The performance of computational intelligence sys-
tems with intermediate datasets in dynamic environments
has yet to be examined. ML algorithms are commonly used
on publicly accessible datasets and have shown significant
results in terms of detection rate and accuracy; nevertheless,
a comparison of effectiveness with private datasets must be
examined. Despite the fact that most of the techniques have
high alert rates, unfortunately they often also have high false
alarm rates. The categorization challenge in a multifactor
environment is complicated; hence, false alerts are inher-
ent with any IDS. To limit false alerts, preventive measures
should be adopted, such as network behavioral analysis,
to help more accurately detect previously unencountered
attack types. Furthermore, a high false-positive rate results
in a high cost, since considerable resources are used in ana-
lyzing the detected activity, which ultimately turns out to be

typical network traffic. Along with detecting and preventing
intrusions, IDS requires an intelligent response mechanism
that can notify and conduct early action as an intrusion is
detected, as well as notify the support team. Because attacks
are directed at different layers of the network communication
model, the security aspects of those layers should be explored
by identifying and locating separate attacks at those layers.
Ensemble and hybrid strategies should be developed to boost
attack detection and classification rates by syntactically and
semantically examining the operation and understanding of
functional characteristics in respect to presentmethodologies.

It is extremely difficult to create an online and real-time,
anomaly-based IDS for IoT networks. This is due to the fact
that such an IDS would have to first acquire regular behavior
in order to identify anomalous or malicious activity. ML and
DL-based IDS, increase computing complexity. Creating an
efficient IDS with low computing needs is thus another issue
and topic for future study.

C. IoT FORENSICS
The Internet-of-Things (IoT) is a relatively new category of
consumer and industrial electronics, and IoT forensics is still
very much in its infancy. Of course, the objective of IoT
forensics mirrors that of digital forensics; namely, to detect
and retrieve digital information in an ethical and forensically
reliable manner [112]. In addition to an IoT device’s local
storage, evidence can be collected via a local network or from
the associated cloud service back-end [113]. The components
of IoT forensics are shown in Figure 4.

With IoT, the focus has been on the benefits and uses
of the technology, as well as on security and privacy risks
that may arise. Within the IoT domain, there is little in the
way of a specialized incident response technique for digital
forensics responders. To fill the gap, Oriwoh et al. [114]
explored theoretical forensic models for IoT forensics to
facilitate the investigation process. The authors suggested
a high-level incident response framework based on zones,
namely internal, middle, and external networks, for dealing
with IoT-related cybercrime incidents. Attacks and abnormal-
ities are more likely in an IoT system since it must operate
24/7 on the internet or a local network.
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Detecting threats and attacks in an IoT platform necessi-
tates extensive data analysis and computational intelligence.
Adversarial threats are the deliberate actions of an entity
with the objective of interfering with corporate IT systems
in such a way that the organization suffers failure or loss.
Shakeel et al. [115] presented a blockchain-assisted shared
audit architecture for determining the source of data from
attackers accessing virtual resources in IoT platforms. The
use of blockchain with AI in IoT can provide distributed
trust, minimize computational and complexity in security, and
allow quick transactions with scalability and flexibility. For
audit analysis and access restrictions, the suggested frame-
work incorporates virtual resources, infrastructure units, and
end-users. For detection and verification, the system employs
two layers of virtual resource log analysis. To find an accept-
able detection, log data analysis is concatenated at the first
level using logical regression ML. In the second level, data
is cross-validated to verify the cause of scavenging. The
proposed solution first detects the adversary by leveraging
requests mapped to the virtual resource, and then filters the
detection for improved verification by making use of the
density of IoT devices. To monitor events between virtual
resources and end-users, blockchain and data analytics for
audits are used in combination. More recently, in 2022,
Mukherjee et al. [116] used a supervised ML model to detect
anomalies in smart devices and IoT systems, which may then
be used in real-world settings to prevent future abnormalities
and attacks. An experiment employed ML algorithms over
DS2oS traffic trace data [117] and evaluated its effectiveness
against the state of the art. The authors found that DT and RF
performed best in their experiments where binary values from
the feature ‘‘value’’ were removed.

The IoT concept rapidly increases the number of devices.
The classification of IoT devices is necessary for numerous
purposes, including but not limited to identifying illegitimate
devices and unwanted devices. Cvitić et al. [118] investigates
the possibility of employing attributes to identify devices
in diverse environments, regardless of function or purpose.
This study made use of 41 IoT devices in total. A classifi-
cation model was created using logistic regression and then
enhanced with supervised ML (logitboost). To develop the
multi-class classification model, 13 network traffic charac-
teristics generated by IoT devices were employed. Based
on the traffic flow properties of such devices, research has
shown that it is feasible to categorize devices into four groups
with excellent performance and accuracy. Specially in IoT
applications, one of the most crucial challenges is resource-
ful analytic procedures with low energy consumption.
Saba et al. [119] combines the Q-learning approach to the
built energy-efficient and fault-tolerant routes, including a
cryptography algorithm, to ensure security protection of con-
fidentiality and authentication against maliciously elements
in a wireless sensor network.

DL has been leveraged by several researchers in the
IoT network security domain to address various challenges.
Data heterogeneity and learning from unlabeled data have

emerged as critical research topics in the IoT ecosystem.
Abdel-Basset et al. [121] deployed DL in a semi-supervised
technique (SS-Deep-ID) to identify IoT intrusions. Further-
more, the approach makes use of LSTM and CNN for feature
extraction from the spatio-temporal dataset. The traffic atten-
tion layer is also used to quantify the relevance of features and
enhance feature extraction prior to actually determining the
final traffic class. An experiment that uses the CIC-IDS2017
and CSE-CIC-IDS2018 datasets demonstrates that SS-Deep-
ID achieves outstanding results in intrusion detection for IoT
contexts. The suggested model is straightforward to incorpo-
rate into a fog-enabled IoT network. Abdel-Basset et al. [122]
also addresses CNN’s failure to capture the long-term prop-
erties of IIoT traffic data and RNN’s problems of gradient
expansion and vanishing by proposingDeep-IFS based onDL
models, which are used for detecting intrusions in IIoT com-
munications. Deep-IFS captures local representations using a
local gated recurrent unit (LocalGRU) and global represen-
tations using multihead attention (MHA). The MHA layer
allows the capture of connected positional information and
provides a flexible flow of information without suffering any
loss. The addition of two autoregressive units improves the
Deep-IFS model’s robustness for intrusion detection on IIoT
traffic in a fog computing environment. The effectiveness of
the proposedmodel is tested on two different datasets, namely
BoT-IoT and UNSW-NB15.

Although DL algorithm-based intrusion detection sys-
tems have advantages over traditional techniques, they suf-
fer from over-fitting issues as the number of attacks grows.
Scalable IDS is required to handle such issues. Jothi and
Pushpalatha [123] investigated the convergence of DL with
metaheuristics.Metaheuristics are search techniques that help
to direct the search process. Essentially, the Whale optimizer
was combined with LSTM to do automated weight and bias
selection. Their approach was evaluated by utilizing various
benchmark datasets, including CIDDS-001, UNSWNB15,
and KDD. The analysis revealed that an accuracy of more
than 99% was maintained in all datasets examined, and the
performance of the proposed model illustrated their suitabil-
ity for an IoT network.

A single classifier is often inadequate to design an effective
IDS, pushing researchers to propose a classifier ensemble
model. Rashid et al. [124] discovered multi-classification
cyberattacks at fog nodes in a distributed rather than a
centralized system to track network traffic with ensemble
approaches for IoT-based smart cities. Before creating the
model, an information gain-based feature selection approach
is used to find the most essential features. ML models are
strengthened using bagging, boosting, and stacking tech-
niques. On datasets, they had the most success using the
stacking strategy.

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
Recognizing the network architecture of the endpoints in an
IoT system forensic investigation is a challenging problem.
There is still the possibility that a sensor transmitting data to
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FIGURE 5. Cloud forensics challenges based on their stages (adapted from [120]).

an IoT gadget is located in an unknown place on the crime
scene. IoT forensics presents certain difficulties in addition
to the potential it provides. New devices, new interfaces,
new storage medium, new file systems, new network pro-
tocols, distributed cloud storage, and ambiguous authority
and jurisdiction are just a few examples. The volume of
data that must be maintained, stored, and analyzed is enor-
mous. Even presenting the results might be difficult. The
evidence-gathering phase is among the most critical parts
of the forensic technique, since any inaccuracy might ren-
der the evidence material incorrect and damage the entire
investigative process. Evidence of cybercrime is difficult to
acquire in the case of IoT devices that are part of huge net-
works, due to a lack of equipment and professional expertise,
as well as improper or insufficient documentation. To gather
some proof of illegal conduct, the forensic investigator should
attempt to evaluate the logs that contribute substantially to
this procedure. Pertinent materials including network logs,
process logs, and application logs from multiple resources
may aid investigators in gaining a better understanding of
the overall device’s activity. Standardization of log formats
and ingestion from various systems is required to address
this challenge. The use of ontologies and semantics have
been explored as an approach to developing a standardized
baseline. This approach can be used to reveal the degree
of interdependencies among the various devices. Behavioral
analysis at the device-level can also aid in the detection of
previously unencountered approaches.

The findings also revealed that data encryption is a critical
topic that needs to be addressed in a future study. Data
encryption is an anti-forensic tactic that has previously been
identified as a barrier in digital forensics. Throughout the
investigation process, the majority of the solutions have over-
looked data privacy. Furthermore, authenticating IoT devices
is essential to ensure that no unauthorized access is permitted.
During the cybercrime investigation process, the IoT-based

authentication system may be used to authenticate access to
IoT devices and identify IoT users. Forensic readiness seeks
to provide a specific organization with the administrative,
technological, and physical control necessary to conduct an
efficient investigation. Forensics readiness in IoT systems
is a difficult problem that requires more study to make IoT
networks forensically suitable. Furthermore, in the context of
IoT, laws and regulations must keep up with the engagement
of technology and forensic procedures.

D. CLOUD FORENSICS
A cloud forensics investigation is described as an examina-
tion of cybercrime that requires evidence from any of the
cloud computing platforms or services [14], [125]. The most
essential aspect is that, in a virtual environment, evidencemay
be stored anywhere. Early investigations into cloud systems
relied on traditional digital forensics methodologies and tech-
nologies. Rapid improvements in cloud computing required
the development of new approaches, frameworks, and tools
for conducting forensics in cloud systems [113]. Early arti-
cles focused on retained data for cloud forensics. From
2010 onwards, cloud forensic frameworks emerged [126].

Most of the publications on cloud forensics have cov-
ered evidence collection, network concerns, privacy issues,
and frameworks to facilitate cloud forensics. Cloud forensics
challenges, based on their stages, are shown in Figure 5.
Khorshed et al. [127] discussed the challenges in cloud

computing related to trust, threats, risks, and other issues
that slow down adoption. The authors also addressed mali-
cious insider attacks, where an authorized employee uses
their privileges to purposefully or unintentionally harm an
organization by stealing, disclosing, or deleting its data. The
proposed model aims to identify an attack when it begins,
or at the very least while it is underway, and also provides
information about the attack type, if cloud providers attempt
to conceal attack information from consumers. NB, MLP,
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SVM, DT, and PART were implemented on WEKA [128],
a Java-based ML tool that includes a range of data visual-
ization tools and algorithms, as well as a graphical interface
for easy access to these features. Attackers usually seek to
disrupt cloud computing performance. A DDoS attack is used
to make services unavailable to their users by flooding the
environment with fake requests. A statistical technique for
detecting DDoS attacks was presented by Gaurav et al. [129].
To distinguish malicious traffic from regular communication,
the authors applied the concepts of cluster entropy and packet
score. Each incoming packet’s packet score is computed and
compared to a predefined threshold. The proposed approach
is reactive in nature, so it begins filtering attack packets at
the start of the DDoS attack to mitigate damage. The trained
model was evaluated using the OMNET++ simulator.

Attackers do reconnaissance and scanning to detect weak-
nesses and initiate attacks on a network. To secure the
network, real-time IDS is required with effective accuracy.
Alshammari and Aldribi [130] presented a lightweight detec-
tion approach for network traffic abnormalities that includes
an ML model for feeding IDS in real-time. This detection
technique makes use of a dataset comprising malicious and
benign data. Wireshark is used to extract features from the
ISOT-CID network traffic dataset [131], which is used to
train six different ML models. The authors added six new
features to the dataset, namely; T-IN, T-Out, APL, PV, TBP,
and novel Rambling that computes the traffic data connec-
tion interval time. During rambling, they extract the packet
payload length and compute the length diversion around the
mean of all packet lengths. Experiments confirmed that it
improves detection accuracy. They compare the effectiveness
of cross-validation (5-, 10-, and 15-folds) and split-validation
(90-10%, 80-20%, and 70-30%) on accuracy. To deal with
ICMP attacks, TCP Sync attacks, UDP attacks, log analy-
sis, and pattern finding difficulties, Sachdeva and Ali [132]
presented a novel solution based on a GA suitable for large
datasets. However, handling such a large volume of data
through a search algorithm makes the process slow. There-
fore, k-NN and MLP are used for preprocessing and finding
duplicates in the data. The suggested method optimizes the
subsets and parameters to achieve higher accuracy.

The pay-as-you-go model of cloud computing encourages
adoption, but can be exploited by an attack known as Eco-
nomic Denial of Sustainability (EDoS), which forces cus-
tomers to pay for extra services triggered by the attacker. Dinh
and Park [133] proposed a solution that consists of online
and offline stages to tackle sophisticated attacks and satisfies
both resource usage and detection performance requirements.
Considering that network traffic has a sequential relationship
in the time dimension, a multivariate time-series data-based
methodology based on GRU is presented to identify and
resolve EDoS intrusions in each network flow. Thesemethods
achieve great accuracy by employing a dynamic threshold,
which helps to lower the high false-alarm rate.

Execution of malicious code, for example for mining cryp-
tocurrency, is also one of the threats to the cloud environment.

Such malicious code typically has multiple ways of trans-
mission and attempts to conceal profit-seeking activity that
is destructive and constantly updated. A technique for iden-
tifying suspicious mining code on cloud platforms is pre-
sented by Li et al. [134], which combines ensemble learning
approaches like bagging and boosting to construct a detec-
tion model. The authors propose a static method to detect
malware based on n-gram string features. The variance of
model detection may be significantly decreased by randomly
collecting samples and allowing models to vote together to
determine the result. The suggested technique outperforms
standard classifiers with regard to accuracy and robustness.

In part due to the Covid-19 pandemic, the health care
sector has paid increased attention to secure cloud-based
systems. When compared to large models in the core cloud,
smaller models in the edge clouds require significantly min-
imal time to train. MUSE, a deep hierarchical stacked neural
network based on DNN, is proposed by Gupta et al. [136]
for detection of malicious behavior that causes changes in
meta-information through the IoT gateway, edge, and core
clouds. This MUSE system integrates and consolidates lay-
ers of learned edge cloud models to produce a partially
pre-trained core cloud model. It enhances the efficiency of
training and the accuracy of detection of large core cloud
models. In contrast to edge clouds, the suggested model in
the core cloud takes significantly less time.

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
Structural differences in cloud architectures poses several
problems in cloud forensics at different stages of investiga-
tion, including identification, preservation, collection, analy-
sis, and reporting.

Unification of log formats is one of the challenges in cloud
forensics, which impedes the investigative process since the
evidence acquired will be in many formats. A distributed
location and a large number of servers are the characteristics
of cloud computing that bring the problems of synchroniza-
tion and timestamping. It is challenging to find evidence in
the cloud infrastructure since service models are deployed
differently. Furthermore, the seizure of machines contain-
ing possible pieces of evidence is limited. Volatile data is
a concern for investigators throughout the preservation and
collection stages since critical data such as processes, registry
entries, and temporary files are erased when a virtual machine
is turned off or restarted under the IaaS service model.

For the investigation process, there can be a single point
of failure in the cloud forensics investigation process. Client-
side evidence identification is critical in investigations, yet
is sometimes difficult to obtain due to multiple jurisdic-
tions. The terms agreed upon inside the cloud service level
agreement (SLA) may offer information on how a forensic
investigation would be conducted. In many circumstances,
critical phrases for inquiry are not mentioned in the SLA
between the cloud service provider (CSP) and the client.
In cross-national data access and sharing, there is a lack
of international collaboration and regulatory mechanisms,
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FIGURE 6. Overview of AI based DNS detection technology (adapted from [135]).

especially when cloud forensics relies on gathering evidence
through servers located in multiple locations. Furthermore,
there is significant potential for future work in the application
of AI to specific cloud service delivery options, such as
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS) [15].

E. DNS TUNNELING
Domain Name System (DNS) tunneling is an attack tech-
nique that attempts to evade detection by using DNS requests
and responses to transmit data. Although DNS tunnels only
provide a limited amount of transport capacity, this data
often includes malware payloads as well as command and
control messaging [137], [138], [139], [140]. DNS tunneling
is considered here in this paper as an example of a kind of
attack that AI techniques have been deployed to address. The
AI-based DNS detection technology is shown in Figure 6.

DNS tunnel detection approaches can be considered as
belonging to either of two different categories, namely rule-
based detection, often based on signatures, or model-based
detection. With the former, rules are manually defined based
on an examination of pertinent features.

Signature-based detection can usually detect DNS tun-
nels with high accuracy and few false positives. Horen-
beeck [141], using the Snort IDS, showed that the early DNS
tunneling tool NSTX [137] included a unique hard-coded
value in DNS packet headers which could be designated
as an NSTX signature. The covert channel attack is used
to transfer information that is not allowed by the security
policy. Sheridan and Keane [142] investigated the detection
of DNS-based covert channels attacks. They used the differ-
ences in average packet size among active and passive DNS
tunnel traffic as a signature for the open-source DNS tunnel-
ing tool Iodine [143]. The signature associated with certain
DNS tunnel techniques or malware activity data suggests
weak generality and significant consumption of resources.
Various model-based detection approaches address this issue.

Model-based detection develops identification rules auto-
matically stemming from different features using an ML
model. Its accuracy highly depends upon the extracted fea-
tures; Sammour et al. [144] extensively discussed the payload
analysis and traffic analysis features. A combination of two
different ML algorithms, RF and DT, has been used to detect
DNS tunneling. The proposed classifiers have been trained on
encrypted flows sufficiently to facilitate a statistics modeling
approach on the inner protocol carried [145]. Each flow is
examined in terms of its unique characteristics, as well as
packet size and inter-arrival latency. The difficulty in identify-
ing DNS tunneling activity in general stems from the fact that
each malware family behaves differently. In this regard, Pre-
ston [146] utilized the recommendation proposed by Nadler
et al. [147] to classify malicious domains instead of malicious
queries. An experiment with six different algorithms has been
performed to achieve higher accuracy and low false alarms,
which is discussed in detail for insight.

Some technologies create tunnel traffic with a charac-
ter distribution comparable to standard DNS queries, which
increases the false alarm rate. Liu et al. [148] addresses this
issue by focusing on DNS record type and query length.
It makes a model to analyze recursive DNS. The model was
trained on dns2tcp, DNScat2, Iodine, and OzymanDns based
datasets. Among the deployed versions of ML for binary
classification, SVM showed the best detection performance
in terms of accuracy, precision, and recall.With the increasing
usage of cryptographic protocols and the use of numerous
protocols to construct tunnels, the flow in the tunnel cannot
be detected directly, rendering the identification method for a
single protocol ineffective. To bridge this gap, instead of aim-
ing at a particular protocol, Bai et al. [149] seeks to discover
pairwise mixing of three protocols: Simple Mail Transfer
Protocol (SMTP), SSH, and HTTP. Regardless of whether
the detection is for a single protocol or a combination of
protocols contained in DNS tunnels, the experiment is based
on an exploratory investigation utilizing regression analysis.
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DL-based approaches may fully employ data structure
and sequence information and automatically extract essential
characteristics. Lai et al. [150] applied this to a feed-forward
neural network without normalizing the dataset. The pro-
posed model has neither specified features nor known mali-
cious samples to train the model. To address the complexity
of real-world data, the detection process uses packet bytes
as features. However, no feature selection leads to high false
positives, making it infeasible. To avoid inadequate feature
selection, Liu et al. [151] utilized CNN, which can real-
ize automatic feature extraction to construct the detection
model. The suggested technique can also learn sequential
and structural information in a single DNS packet, some-
thing typical ML algorithms cannot do. The authors take
full advantage of the information by converting DNS packets
into bytes and applying byte-level CNN on the dataset col-
lected through Iodine, Dns2tcp, Dnscat2, OzymanDNS, and
ReverseDNShell and comparing existingML algorithms such
as SVM, LR, and neural networks with the proposed model.

Zhang et al. [152] demonstrated the efficacy of identifying
a covert channel prior to data exfiltration so that the network
security system may instantly stop DNS tunneling. The pro-
posed model utilizes DNS query payloads as the predictive
variable instead of query length or query ratio. They created
features such as domain name length, character proportion,
a randomness feature, and semantic feature composition. The
system is developed using models included a Dense Neu-
ral Network, 1D-CNN, RNN-LSTM, and RNN-GRU. Based
on the scoring algorithm’s combination rule, the 1D-CNN
model with the bestMatthews Correlation Coefficient (MCC)
value was chosen as the one-model detection decision maker,
and the best three models were chosen as the multimodel
detection decision maker. 1D-CNNwas investigated by Palau
et al. [153] for its potential use in lexicographical DNS tunnel
discovery. Due to a scarcity of datasets for assessing DNS
tunneling connections, they employ their own dataset. The
dataset was created on a virtual machine infrastructure using a
time injection methodology. The model achieved a false posi-
tive rate of close to 0.8%. Detecting malicious payloads from
a single DNS query is critical for detecting DNS tunneling.

Sakarkar et al. [154] performed a comparative study
between different DL models such as 1D-CNN, simple RNN,
LSTM, and GRU over general datasets. The implementation
of DL models in late 2021 [149], [155], [156], indicates the
potential for improvement or enhancement in DNS tunneling
detection systems through DL.

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
The issue with identifying DNS tunneling activity, in gen-
eral, is that each malicious family may act differently. The
highlighted features might be controlled by modifying the
volume of data delivered or the length, by making small,
infrequent queries. Tunneling designed to be undetected by
classifiers may become more widespread in the future, and
ML models may require characteristics on the non-encrypted
side of the stack to become more recognizable. Research

FIGURE 7. Smart grid domains (adapted from [158]).

in the area suggests that models can improve with a larger
dataset that includes the majority of current DNS tunneling
query behaviors. Furthermore, by having a pre-existing list
of recognized valid queries, the operational cost of verifying
each DNS tunneling query may be decreased. A collection of
known authentic and malicious queries would help the cache
miss technique to detect the portion of the query that reflects
known fraudulent queries. Orphan DNS queries could also be
used to identify DNS tunneling since they lack a comparable
request from some other service, such as HTTP. Orphan
DNS queries, on the other hand, may be lawfully utilized by
security devices and programs for IP address search queries.
Outliers in the dataset were detected using flaggable features.

F. SMART GRID FORENSICS
Smart Grid forensics research is mostly used to identify
security issues with a smart electrical grid system. Smart grid
forensicsmay also conduct cybercrime investigations, includ-
ing hacking, data theft, and so on [157]. Different domains
associated with smart grid are shown in Figure 7.
The smart grid systemwas proposed by Arnold et al. [159],

which promises frameworks and road-maps for an efficient
and intelligent approach to managing energy supply and con-
sumption. The adoption of different AI techniques including
ML and DL to resolve complex problems was already well
established at that point. There are three critical factors to
security in the smart grid network, namely confidentiality,
integrity, and availability. Zhang et al. [160] proposed a dis-
tributed IDS and deployed it on a three-layer network. The
AIS [161] algorithms (CLONALG or AIRS2Parallel) based
model considers security for both physical power systems and
communication systems. It is capable of efficiently and effec-
tively analyzing network traffic in order to assess whether an
attack is taking place, what form of attack it is, and where it
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is coming from in the network. Experiments through multi-
ple simulations demonstrate the effectiveness of the model.
The smart grid infrastructure consists of heterogeneous and
homogeneous devices that may be vulnerable to different
attacks, such as implant attacks, black hole attacks, and mali-
cious handheld terminals. Baig [162] proposed a lightweight
model based on Graph Neuron, which is a decentralized
pattern recognition algorithm for smart grid infrastructure to
detect the various type of attacks. It creates an associative
memory structure by linking individual device readings in
a graph-like pattern. Due to its lightweight characteristic,
it is affordable and feasible for deployment with time-bound
applications.

The automated generation control (AGC) loop is one of
the communication-dependent systems in an electric grid, and
the power modulation controller (PMC) is used as a damping
controller to regulate system performance. Both are vulnera-
ble to attacks such as false data injection, which disrupt the
stability of power systems. Recently, a multi-agent system
consisting of a master agent and several agents was proposed
by Roy et al. [163]. For intrusion detection, a master agent
with a one-class classifier (OCC) is used to examine large
area signals. The model uses a unique ML training approach
to fit an OCC capable of detecting data-availability and
data-integrity attacks on high-voltage direct current (HVDC)
systems, AGC, and PMC. Training of OCC is done with
predefined parameters, where feature extraction takes place
using the binary classification algorithm. The dataset used to
train the proposed model is simulated, and a comparison is
done against the state-of-the-art algorithms ofML&DL such
as SVM, DT, k-NN, 1D-CNN, LSTM, etc.

A low detection rate and high false alarms are the current
issues when employing IDS to detect malicious activities in
any field. To improve the smart grid’s security and reduce
high false alarms, Khoei et al. [164] investigate ensem-
ble learning methods, i.e., bagging-based, boosting-based,
and stacking-based, over the CIC-DDoS2019 benchmark
dataset that contains a lot of DDoS attacks for anomaly IDS.
The impact of two different methods of feature selection,
namely Pearson’s Correlation Coefficient, which computes
the strength of the linear relationship between two character-
istics whose values are between -1 and 1 and Extra Tree Clas-
sifier, which only rates the relevance of characteristics and
deletes unnecessary ones from the dataset [165], is investi-
gated. The authors used the 5-fold validation and grid-search
hyperparameter methods to train and validate the proposed
classifiers. The stacking method outperforms other ensemble
learning methods and traditional ML algorithms.

Smart grid communication data must be protected against
two types of attacks: passive attacks, which affect confiden-
tiality, and active attacks that affect availability or integrity.
To complement both, Prasad et al. [167] suggested a phys-
ical layer security solution be considered as the first line
of defense in their work for intrusion detection in smart
grids. The presented scheme uses the ML model SVM and
AdaBoost, which helps to provide an accurate classification

result and is capable of identifying and tracking down a mali-
cious communication node. To recognize and locate an active
intruder, exploit PLC channel state information (CSI) that
depends on the power line’s physical characteristics and is
naturally calculated by PLC modems. A change in the nature
of one of these characteristics affects the estimated CSI. The
suggested technique may be deployed as a standalone model
or in conjunction with an existing IDS to detect active and
passive network eavesdroppers. The entire system does not
require any physical devices; instead, it communicates using
the grid’s existing PLC modems.

Privacy preservation is essential in network communica-
tion applications. Blockchain technology has been used in
smart power networks to authenticate meter nodes. How-
ever, significant resources and time are required to process
the data. A privacy-preserving architecture was developed
to accomplish privacy and security at the same time by
Keshk et al. [168]. The proposed framework is built on two
levels: the first module is focused on verifying data integrity
using proof of work blockchain and using a variational
AutoEncoder to modify data, and the second is an anomaly
detection module for training and evaluating the output of the
first module. An AutoEncoder is used along with eight input
features to form data into an encoded shape to avoid inference
attacks. Using two public datasets, UNSW-NB15 and ICS
power systems, the anomaly detection module trains and
validates the outputs of the two-level privacy module using
a DL approach through LSTM. Experiments demonstrate
its competitiveness versus cutting-edge approaches for data
protection and anomaly detection. Similarly, Yao et al. [169]
suggested an energy theft detection approach based on Pail-
lier Homomorphic algorithm and CNN to protect energy
privacy. The research takes into account a network model that
comprises a local area network, a control center, users, and a
trusted third party. A CNN was employed to detect unusual
stealing activity, whereas the Paillier Homomorphic algo-
rithm used in the proposed model aims at safeguarding the
confidentiality of users, which is one of the major concerns
in smart grid. The State Grid Cooperation of China (SGCC)
dataset was used to evaluate performance. To meet data
integrity and confidentiality requirements, Jakaria et al. [170]
suggested a safety inspection for AMI Networks, focusing
on protection against physical manipulation and infiltration.
The study presents two major defensive strategies for attack
situations, such as modifying data traveling through itself
and manipulating selected data to attack a particular node,
naming them as ‘‘Suspicious Node Detection and Anomaly
Detection Technique’’. The study’s goal is to anticipate the
veracity of incoming data recorded by smart meters. The sug-
gested model is trained on the data collected from the smart
meters’ layout by the ‘‘Irish Social Science Data Archive
Center’’.

Many other pieces of research have been done by the
researchers to secure the smart grid system and detect mali-
cious activities by using DL techniques. The survey has been
done by Zhang et al. [171].
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FIGURE 8. Vehicular network data acquisition setup (adapted from [166]).

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
The heterogeneous nature of smart grid systems poses a
significant challenge as well as a possible threat to smart grid
security. Many current solutions still have significant limita-
tions. Data aggregation and protocol translation are required
for device communication. However, such aggregation might
lead to incidental breaches and vulnerabilities, since a char-
acteristic in one protocol can not be adequately translated
into another. A broad range of issues with communication
protocols, operating systems, and hardware in the smart grid
might expose the system to a broad range of attacks. Oper-
ating systems can lack appropriate security features since
they are developed for automation control components. New,
more secure protocols for smart grid networks can provide for
improved confidentiality, privacy, integrity, and transparency.
Furthermore, the majority of physical devices are outdated,
while others have insufficient memory space and low pro-
cessing capability, making them incapable of supporting new
security procedures.

IDS, firewalls, and encryption technologies all play impor-
tant roles in safeguarding traditional networks. These tech-
nologies have significant limitations and are unsuitable for
a distributed environment with varying application needs,
including latency and bandwidth. IDSs also have a number
of shortcomings, e.g., high false positive rates and signifi-
cant manual investigation of alerts to determine their legit-
imacy. ML/DL approaches to increase the performance of
these systems need substantially large datasets, which are
not commonly shared. Though some organizations released
datasets, these do not contain real-world data acquired from
real attacks. As a result, there remains a need for producing
and sharing datasets to train and validate AI models. These
technologies are incapable of mitigating upcoming attacks.
Smart grids are divided into logical domains, and security

needs vary from one domain to the next. Scalable techniques
that can collect sufficient evidence from the system need to be
improved. Incidents that occur moments before a breakdown
may provide useful information about system weaknesses.

G. VEHICULAR FORENSICS
The capture and analysis of digital evidence from motor
vehicles is a part of digital vehicle forensics. This evidence
can assist in the investigation of crimes involving a motor
vehicle or in determining the cause of an automobile acci-
dent [172]. The data acquisition setup from the vehicle is
shown in Figure 8.
The Driving Ad Hoc Networking Infrastructure (DAHNI)

solution for delivering driver assistance is presented by
Zarki et al. [173]. Based on three main assumptions, i.e.,
location awareness: vehicles equipped with GPS; ad hoc
networking: vehicles equipped with computing components;
and access to fixed infrastructure: to upload data from vehi-
cles. The authors did an analysis of how they may uti-
lize a vehicular network to track surrounding cars and alert
the driver to potential risks. Security and privacy threats
that vehicle networks are vulnerable to are highlighted
in [174] and [173]. Based on the information given for
authentication, malicious cars might track the actions of
the targeted driver. Hubaux et al. [174] attempted to over-
come these issues by employing anonymity techniques and
temporary pseudonyms. Considering key sizes and authen-
tication delays, Hubaux [175] investigated the challenges
associated with key management for vehicle networks. The
researchers proposed a vehicular public key infrastructure
that includes a certificate authority (CA) that supplies cars
with public/private key pairs. The authors assume that auto-
mobiles have electronic identities in the form of an electronic
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license plate or electronic chassis number. To protect privacy
and avoid monitoring, each car receives a huge number of
short-lived anonymous key certificates that do not include
the vehicle ID. To avoid location monitoring, public/private
key pairs must be updated on a regular basis. The authors
examined the computational complexity and signature size
of three public-key cryptosystems (PKCS). The proposed
digital signature is based on the elliptic curve digital signature
algorithm (ECDSA), which aids in packet size reduction.

A controller area network (CAN) bus connects all elec-
tronic control units (ECUs) in a vehicle to transfer messages
and execute actions. However, modern vehicles increase con-
nectivity and complexity. Security issues have become a
significant concern in Vehicle-to-Everything (V2X). Smart
vehicles contain information about the vehicle as well as the
driver. To avoid hacking and car theft, the vehicle must ensure
that the driver’s identity and profile are valid. A recent study
carried out by Talpur and Gurusamy [176] to categorize ML
techniques based on their utilization in V2X applications and
methodologies, along with the working principles of these
ML techniques in solving various security concerns, includ-
ing attacks, privacy, trust, intrusion detection, and driver
identification/fingerprinting, were reviewed. Not long ago,
Martinelli et al. [177] demonstrated how ML algorithms
may help distinguish between genuine automobile owners
and reprobates using features from the CAN. The intake
air pressure (used to calculate air density and determine the
engine’s air mass flow rate) and torque of friction (defined
by the authors as the frictional force when two objects come
into contact) were used to build the classification models.
Ten different ML models were analyzed, including k-NN,
SVM, DT, NB, and RF. Security weaknesses of CAN were
discussed and addressed by D’Angelo et al. [178] through a
cluster-based multidimensional model that is used to detect
the DoS, fuzzy attacks, GEAR attack, and RPM attacks. The
authors mine key features from data associated with various
messages traveling on the CAN bus in an unsupervised man-
ner. Javed et al. [179] also addresses the CAN bus commu-
nication by using novel approach CANintelliDS, which is
based on DL models namely CNN and GRU-based attention.
Compared to conventional techniques such as RF, LR, CNN,
and so on, CANintelliDS fared well in identifying monomer
and hybrid attacks.

Traditional misbehavior detection approaches are success-
ful at preventing intrusions, but they fall short of safe-
guarding V2V communication. [180] proposed a data-centric
approach that identifies erroneous information transmitted
between Internet-of-Vehicles (IoV) with a lightweight statis-
tical approach relevant for real-time safety applications. This
research is unique in that it combines location and movement
plausibility tests with typical supervised ML techniques to
improve the accuracy of results. In addition to detecting mis-
behavior, the model identifies attack types to aid in validating
counter measures. The authors evaluated the effectiveness of
six supervised ML techniques, including SVM, RF, k-NN,
NB, and ensemble learning.

Mekki et al. [181] combined driver behavior data with a
DL system to ensure driver identification while accounting
for abnormalities. They provided a comprehensive driver fin-
gerprint identification solution based on CNN and RNN. The
authors consider driver personal data to be a time series, and
driver identification to be amultivariate time series classifica-
tion. The proposed model was trained on smartphone sensors
and the vehicle’s ECU.Many traditional securitymechanisms
are unsuitable for IVNs due to the violating timing con-
straints of CAN communications. Recently, Yang et al. [182]
addresses internal and external network’s weaknesses and
proposes the first multi-tiered hybrid IDS (MTH-IDS) for
the detection of known and undiscovered threats. The pro-
posed MTH-IDS framework has both signature-based IDS
and anomaly-based IDS, where the data preprocessing is
performed through the K-means algorithm. For unsupervised
learner optimization, two biased classifiers and a Bayesian
optimization with Gaussian Process (BO-GP) technique were
used. The proposed solution is evaluated using two public
network data sets, namely CAN-intrusion-dataset [183] and
the CIC-IDS2017 dataset. Various metrics are used to analyze
the model’s feasibility, performance, and efficiency.

According to Cai et al. [184], a superior traffic fea-
ture extraction approach not only lowers duplicate features
but also improves network convergence performance. They
suggested an effective hybrid parallel deep learning Model
(HPM) for IDS. Instead of using CICFlowMeter’s standard
way to extract the feature, the authors propose a novel dataset
creation methodology for ISCX 2012 [40] and CIC-IDS
2017, and regard data flow as a detection object. To minimize
computing complexity and condense data dissemination, flow
splitting, traffic cleaning, and traffic tailoring stages are used.
HPM utilizes a hybrid parallel structure as a training module
and a double-LSTM as a temporal feature extraction module,
rather than a single model. The approach filters the beneficial
local and global characteristics from processed data flow and
forecasts the data flow’s future changing behavior and occur-
rence probability from a batch of time series. The CosMargin
discriminative classification algorithm is introduced, which
indirectly implements a margin boundary on the feature layer
to distinguish benign/malicious traffic.

1) CURRENT CHALLENGES AND FUTURE DIRECTIONS
Some vehicular agents may intentionally or unintention-
ally broadcast false data as a result of a malfunction in an
embedded sensor, which may then be transmitted to servers
for training regardless of its trustworthiness. This fictitious
information may give AI models inaccurate data and make
them vulnerable to making incorrect decisions. Among the
most serious challenges in vehicular networks are jammer
attacks, cache pollution and void announcements. A jammer
can switch the attack operation mode (run/sleep) at any point.
Cache pollution attacks require protective solutions, since the
sole option recommended is to prevent caching for certain
items. This affects/disables the fundamental operation of the
networks. A void announcement attack is where a malicious
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vehicle announces availability of certain data, but then does
not respond to requests for this. In addition to IDS at the
data connection and physical levels, the more technologically
advanced vehicles require an effective defensive system at
the application layer to protect them from attacks. Due to
the dispersed nature of the automotive environment, there
are additional issues to study, such as disclosing private
vehicular information or corrupting local data and federated
learning models. The proposed models to handle such issues
still have limitations such as computational complexity and
unsatisfactory performance on a large number of vehicles.
Because of the computational costs imposed by ML/DL
architectures, resource management is critical to achieving
usable, practical, and successful AI solutions. The offloading
of heavy computational DL can lead to faster andmore secure
vehicular systems. One of the obstacles posed by intellectual
property concerns is obtaining confidential details from the
vendors of the various vehicle parts throughout the investiga-
tion. Vehicle producers also face the problem of reputational
and legal risks associated with releasing intelligence. The
makers might face substantial financial, legal, and reputa-
tional consequences as a result of this.

IV. CONCLUSION
This paper presents the state-of-the-art in the application of
AI across several domains within network forensics. It pro-
vides an overview of AI approaches previously used on
datasets relevant to network forensics, and highlights the
current challenges and future directions in network forensics.
Addressing the constraints and problems in tools and ecosys-
tem implementations can assist investigators to conduct more
efficient and reliable network investigations.

Undoubtedly, developments or advancements in any sector
or domain, either through AI or other means, are impossible
to achieve without the core ingredient – data. This is still
the main constraint across many domains due to the dearth
of sufficiently large, clean, labeled databases or limitations
on the access of the available datasets. One contributing
factor is that many organizations avoid revealing information
regarding security breaches due to the heightened risk of
reputational harm that could ultimately result in financial
loss. One tactic for mitigating the problem is to bridge the
gap between blue-chip companies and academic/research
institutions by signing non-disclosure agreements (NDA) for
the advancement and enhancement of the field. This could
be coupled with sufficient anonymization of the data itself.
Various AI approaches, such as ML, DL, ensemble learning,
and others, are being used in network forensics. However,
different algorithms, hybrid techniques, and approaches can
be employed for future work. Furthermore, while deploying
AI for network forensics, reducing false-positives is currently
the most pressing issue that needs to be addressed.

Cloud computing is one of the fastest growing sectors in
today’s world, and it generates a large volume of different
types of logs including host logs, application logs, API logs,
and many more. The gathering of crucial logs in IDS and

standardization of all created logs in a centralized repository
will assist in enhancing cloud forensics using AI, which will
undoubtedly help to speed up the process and effectiveness of
manual processes. Smart cities, IoT, cloud computing, and a
slew of other domains are now reliant on fog devices, posing
issues in terms of complex development and resource con-
sumption. Despite the fact that federatedML has emerged as a
newwave of AI based on the decentralization of data learning
at the network’s edge, it still requires development through
the implementation of innovative ideas. Many ransomware
attacks result in financial loss and can damage the reputa-
tions of well-known organizations. This demonstrates one
significant challenge. Namely the prevention and detection
of ransomware attacks by improving the detection of non-
trusted sources, improving or proposing strong authentication
mechanisms, and applying AI for cyber hygiene.

The popularity of virtualization in the current era corre-
sponds to a prevalence of software-defined networks (SDNs).
In the initial development of software defined network archi-
tectures, increased focus was its functional benefits and the
security aspect somewhat lagged behind. However, improve-
ments in SDNs and the fact that it is a centralized controlled
infrastructure increases the network threats – including the
hijacking of SDN controllers. Improving the security in the
existing layers or adding a security layer can be employed in
the future to secure the SDN and avail its maximum benefits.
The utilization of emerging blockchain and AI technologies
together can help to address various security and investigatory
challenges.
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